Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Technical Paper

Calibration of Electrochemical Models for Li-ion Battery Cells Using Three-Electrode Testing

2020-04-14
2020-01-1184
Electrochemical models of lithium ion batteries are today a standard tool in the automotive industry for activities related to the computer-aided engineering design, analysis, and optimization of energy storage systems for electrified vehicles. One of the challenges in the development or use of such models is the need of detailed information on the cell and electrode geometry or properties of the electrode and electrolyte materials, which are typically unavailable or difficult to retrieve by end-users. This forces engineers to resort to “hand-tuning” of many physical and geometrical parameters, using standard cell-level characterization tests. This paper proposes a method to provide information and data on individual electrode performance that can be used to simplify the calibration process for electrochemical models.
Journal Article

Exhaust Manifold Durability Subject to Splash Quenching

2015-04-14
2015-01-1735
Exhaust manifold design is one of the more challenging tasks for the engine engineer due to the harsh thermal and severe vibration environment. Extremely high exhaust gas temperatures and dynamic loading combine to subject the manifold to high cyclic stress when the material has reduced fatigue strength due to the high temperature. A long service life before a fatigue failure is the objective in exhaust manifold design. Accumulation of fatigue damage can occur from dynamic loading and thermal loading combined. Thermal mechanical fatigue (TMF) is a primary mechanism for accumulating fatigue damage. TMF typically occurs when a vehicle driving cycle has operating conditions that repeatedly change the exhaust gas temperature between hot and cold. Another way to experience temperature cycling is through splash quenching. Splash quenching was analyzed and found to rapidly accumulate fatigue damage.
Journal Article

Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

2016-04-05
2016-01-0290
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to the experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results.
Journal Article

Multidisciplinary Optimization under Uncertainty Using Bayesian Network

2016-04-05
2016-01-0304
This paper proposes a novel probabilistic approach for multidisciplinary design optimization (MDO) under uncertainty, especially for systems with feedback coupled analyses with multiple coupling variables. The proposed approach consists of four components: multidisciplinary analysis, Bayesian network, copula-based sampling, and design optimization. The Bayesian network represents the joint distribution of multiple variables through marginal distributions and conditional probabilities, and updates the distributions based on new data. In this methodology, the Bayesian network is pursued in two directions: (1) probabilistic surrogate modeling to estimate the output uncertainty given values of the design variables, and (2) probabilistic multidisciplinary analysis (MDA) to infer the distributions of the coupling and output variables that satisfy interdisciplinary compatibility conditions.
Journal Article

Effect of Humidity on the Very High Cycle Fatigue Behavior of a Cast Aluminum Alloy

2016-04-05
2016-01-0371
In this paper, fatigue tests on a cast aluminum alloy (AS7GU-T64) were performed under different frequencies and humidity levels. Tests conducted under conventional frequency in laboratory air have been compared to tests conducted under ultrasonic frequency in dry air, saturated humidity and in distilled water. It was observed that the highest and lowest fatigue lives correspond to ultrasonic fatigue tests in dry air and in distilled water, respectively. Unlike specimens tested at conventional frequency, all of the specimens tested at ultrasonic frequency presented a large amount of slip facets on the fatigue crack propagation fracture surface.
Journal Article

Modeling of Phase Change within a Wax Element Thermostat Embedded in an Automotive Cooling System

2017-03-28
2017-01-0131
In an automotive cooling circuit, the wax melting process determines the net and time history of the energy transfer between the engine and its environment. A numerical process that gives insight into the mixing process outside the wax chamber, the wax melting process inside the wax chamber, and the effect on the poppet valve displacement will be advantageous to both the engine and automotive system design. A fully three dimensional, transient, system level simulation of an inlet controlled thermostat inside an automotive cooling circuit is undertaken in this paper. A proprietary CFD algorithm, Simerics-Sys®/PumpLinx®, is used to solve this complex problem. A two-phase model is developed in PumpLinx® to simulate the wax melting process. The hysteresis effect of the wax melting process is also considered in the simulation.
Journal Article

Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates

2017-03-28
2017-01-0223
Morphological features of voids were characterized for T300/924 12-ply and 16-ply composite laminates at different porosity levels through the implementation of a digital microscopy (DM) image analysis technique. The composite laminates were fabricated through compression molding. Compression pressures of 0.1MPa, 0.3MPa, and 0.5MPa were selected to obtain composite plaques at different porosity levels. Tension-tension fatigue tests at load ratio R=0.1 for composite laminates at different void levels were conducted, and the dynamic stiffness degradation during the tests was monitored. Fatigue mechanisms were then discussed based on scanning electron microscope (SEM) images of the fatigue fracture surfaces. The test results showed that the presence of voids in the matrix has detrimental effects on the fatigue resistance of the material, depending on the applied load level.
Journal Article

A Novel Approach to Create Dimensional Tolerance Requirements from Expert Knowledge

2017-03-28
2017-01-0241
Geometric Dimensioning and Tolerancing is used to describe the allowed feature variations regarding the product design. Tolerance specification is important in many stages of all phases on product development. The product development engineering need to define the symbols to use on the Feature Control Frame of every component. Since the component function has an increment on its complexity year over year, it is not trivial to define those symbols anymore. The determination of dimensional tolerance shall be preceded by careful specification of the types of tolerance and symbols that will be applied in controlled features. Poor tolerance specifications can increase the production cost, require late product changes or lead to legal issues.
Journal Article

High Strain Rate Mechanical Characterization of Carbon Fiber Reinforced Polymer Composites Using Digital Image Correlations

2017-03-28
2017-01-0230
The introduction of carbon fiber reinforced polymer (CFRP) composites to structural components in lightweight automotive structures necessitates an assessment to evaluate that their crashworthiness dynamic response provides similar or higher levels of safety compared to conventional metallic structures. In order to develop, integrate and implement predictive computational models for CFRP composites that link the materials design, molding process and final performance requirements to enable optimal design and manufacturing vehicle systems for this study, the dynamic mechanical response of unidirectional (UD) and 2x2 twill weave CRFP composites was characterized at deformation rates applicable to crashworthiness performance. Non-standardized specimen geometries were tested on a standard uniaxial frame and an intermediate-to-high speed dynamic testing frame, equipped with high speed cameras for 3D digital image correlation (DIC).
Journal Article

Impact of Rivet Head Height on the Tensile and Fatigue Properties of Lap Shear Self-Pierced Riveted CFRP to Aluminum

2017-03-28
2017-01-0477
Tensile and fatigue properties of continuous braided carbon fiber reinforced polymer (CFRP) composite to AA6111 self-piercing riveted (SPR) lap shear joints are presented. Rivets were inserted at two target head heights separated by 0.3 mm. Even within the narrow range of head heights considered, the flushness of the rivet head was found to have a dominant effect on both the monotonic and fatigue properties of the lap shear SPR joints. Joints created with a flush head resulted in a greater degree of fiber breakage in the top ply of the CFRP laminate, which resulted in lower lap shear failure load as compared to SPR joints produced with a proud rivet head. Irrespective of the lap shear failure load, rivet pullout was the most common failure mode observed for both rivet head heights. In fatigue tests, the SPR joints produced with a proud head exhibited higher fatigue life compared to SPR joints produced with a flush head.
Journal Article

HEV Battery Pack Thermal Management Design and Packaging Solutions

2017-03-28
2017-01-0622
Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
Journal Article

Aerodynamic Investigation of Cooling Drag of a Production Pickup Truck Part 1: Test Results

2018-04-03
2018-01-0740
The airflow that enters the front grille of a ground vehicle for the purpose of component cooling has a significant effect on aerodynamic drag. This drag component is commonly referred to as cooling drag, which denotes the difference in drag measured between open grille and closed grille conditions. When the front grille is closed, the airflow that would have entered the front grille is redirected around the body. This airflow is commonly referred to as cooling interference airflow. Consequently, cooling interference airflow can lead to differences in vehicle component drag; this component of cooling drag is known as cooling interference drag. One mechanism that has been commonly utilized to directly influence the cooling drag, by reducing the engine airflow, is active grille shutters (AGS). For certain driving conditions, the AGS system can restrict airflow from passing through the heat exchangers, which significantly reduces cooling drag.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses

2018-04-03
2018-01-1239
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens of different thicknesses with FDS joints with clearance hole were made and tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under quasi-static loading conditions. Under quasi-static loading conditions, as the thickness increases, the FDS joint failed from the penetration of the screw head into the upper sheet to the failure of the screw between the two sheets. Optical micrographs also show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under cyclic loading conditions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Journal Article

Investigation of Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2016-04-05
2016-01-0501
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole are investigated based on experiments and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints were tested under cyclic loading conditions. Optical micrographs show that the failure modes of the FDS joints in specimens with and without clearance hole are quite similar under cyclic loading conditions. The fatigue lives of the FDS joints in specimens with clearance hole are longer than those of the FDS joints in specimens without clearance hole for the given load ranges under cyclic loading conditions. A structural stress fatigue life estimation model is adopted to estimate the fatigue lives of the FDS joints in lap-shear specimens under high-cycle loading conditions.
Journal Article

A Comparative Study of Two ASTM Shear Test Standards for Chopped Carbon Fiber SMC

2018-04-03
2018-01-0098
Chopped carbon fiber sheet molding compound (SMC) material is a promising material for mass-production lightweight vehicle components. However, the experimental characterization of SMC material property is a challenging task and needs to be further investigated. There now exist two ASTM standards (ASTM D7078/D7078M and ASTM D5379/D5379M) for characterizing the shear properties of composite materials. However, it is still not clear which standard is more suitable for SMC material characterization. In this work, a comparative study is conducted by performing two independent Digital Image Correlation (DIC) shear tests following the two standards, respectively. The results show that ASTM D5379/D5379M is not appropriate for testing SMC materials. Moreover, the failure mode of these samples indicates that the failure is caused by the additional moment raised by the improper design of the fixture.
Journal Article

Experiment and Simulation Study on Unidirectional Carbon Fiber Composite Component under Dynamic Three-Point Bending Loading

2018-04-03
2018-01-0096
In the current work, unidirectional (UD) carbon fiber composite hatsection component with two different layups are studied under dynamic three-point bending loading. The experiments are performed at various impact velocities, and the effects of impactor velocity and layup on acceleration histories are compared. A macro model is established with LS-DYNA for a more detailed study. The simulation results show that the delamination plays an important role during dynamic three-point bending test. Based on the analysis with a high-speed camera, the sidewall of hatsection shows significant buckling rather than failure. Without considering the delamination, the current material model cannot capture the post-failure phenomenon correctly. The sidewall delamination is modeled by assumption of larger failure strain together with slim parameters, and the simulation results of different impact velocities and layups match the experimental results reasonably well.
Journal Article

Multibody Dynamics Cosimulation for Vehicle NVH Response Predictions

2017-03-28
2017-01-1054
At various milestones during a vehicle’s development program, different CAE models are created to assess NVH error states of concern. Moreover, these CAE models may be developed in different commercial CAE software packages, each one with its own unique advantages and strengths. Fortunately, due to the wide spread acceptance that the Functional Mock-up Interface (FMI) standard gained in the CAE community over the past few years, many commercial CAE software now support cosimulation in one form or the other. Cosimulation allows performing multi-domain/multi-resolution simulations of the vehicle, thereby combining the advantages of various modeling techniques and software. In this paper, we explore cosimulation of full 3D vehicle model developed in MSC ADAMS with 1D driveline model developed in LMS AMESim. The target application of this work is investigation of vehicle NVH error states associated with both hybridized and non-hybridized powertrains.
X