Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Improved Model for Coupled Structural-Acoustic Modes of Tires

2015-06-15
2015-01-2199
Experimental measurements of tire tread band vibration have provided direct evidence that higher order structural-acoustic modes exist in tires, not just the well-known fundamental acoustical mode. These modes display both circumferential and radial pressure variations within the tire's air cavity. The theory governing these modes has thus been investigated. A brief recapitulation of the previously-presented coupled structural-acoustical model based on a tensioned string approach will be given, and then an improved tire-acoustical model with a ring-like shape will be introduced. In the latter model, the effects of flexural and circumferential stiffness are considered. This improved model accounts for propagating in-plane vibration in addition to the essentially structure-borne flexural wave and the essentially airborne longitudinal wave accounted for in the previous model. The longitudinal structure-borne wave “cuts on” at the tire's circumferential ring frequency.
Journal Article

Adaptive Robust Motion Control of an Excavator Hydraulic Hybrid Swing Drive

2015-09-29
2015-01-2853
Over the last decade, a number of hybrid architectures have been proposed with the main goal of minimizing energy consumption of off-highway vehicles. One of the architecture subsets which has progressively gained attention is hydraulic hybrids for earth-moving equipment. Among these architectures, hydraulic hybrids with secondary-controlled drives have proven to be a reliable, implementable, and highly efficient alternative with the potential for up to 50% engine downsizing when applied to excavator truck-loading cycles. Multi-input multi-output (MIMO) robust linear control strategies have been developed by the authors' group with notable improvements on the control of the state of charge of the high pressure accumulator. Nonetheless, the challenge remains to improve the actuator position and velocity tracking.
Journal Article

Modeling of Li-ion Battery Performance in Hybrid Electric Vehicles

2009-04-20
2009-01-1388
Considerable improvements can be obtained in battery performance for hybrid electric vehicles (HEVs) by employing an electrochemistry-transport model based on a multi-physics modeling framework and ultrafast numerical algorithms. One important advantage of this approach over the lumped equivalent circuit (or look-up table) approach is the ability of the former to adapt to changes in design and control. In this work, we present mathematical and numerical details of our approach, and demonstrate the robustness of this battery model in simulation of short-pulse charge/discharge characteristic of HEV driving cycles under room and low temperatures.
Journal Article

Vehicle Dynamics Simulation for Predicting Steering Power-Off Limit Performance

2008-04-14
2008-01-0587
A simulation tool has been developed for predicting steering effort of a vehicle during steering power-assist system failure. The vehicle system is modeled with the inclusion of a system-level vehicle model and a steering system model that are linked together through the steering moment at the kingpin and front road wheel angle. A driver model has also been designed to provide closed-loop steering angular input to make the car follow a certain target path. The simulation model is correlated well with actual vehicle tests under various steering input and lateral acceleration conditions. Also illustrated are some examples of comparison between measured and simulated sensitivity study for selected factors.
Journal Article

The Influence of Direct Yaw Control AWD Systems on Vehicle Stability and Response in All Driving Conditions

2008-04-14
2008-01-0591
Driveline torque distribution has long been a research topic, and in the last several decades research has been directed towards enhancing on-road vehicle stability and agility through application of controllable driveline systems. This paper discusses the impact of Direct Yaw Control AWD systems (DYC AWD Systems) on the combined acceleration and turning performance as it pertains to maneuverability and stability on all road surfaces. To achieve higher levels of both safety and performance, the application of a controllable DYC AWD system capable of applying direct yaw moment to the vehicle chassis serves as a key goal to achieve the optimal result. A classification of existing driveline systems is discussed and compared to these optimal requirements. Representative on-vehicle scenarios are discussed to illustrate the impact of AWD control on the vehicle stability and maneuverability and to highlight the effects to the vehicle operator.
Journal Article

DSRC Performance Comparison With and Without Antenna Diversity Using Different Transmission Power

2012-04-16
2012-01-0491
Vehicle-to-Vehicle (V2V) safety application research based on short range real-time communication has been researched for over a decade. Examples of V2V applications include Electronic Emergency Brake Light, Do Not Pass Warning, Lane Departure Warning, and Intersection Movement Assist. It is hoped that these applications, whether present as warning or intervention, will help reduce the incidence of traffic collisions, fatalities, injuries, and property damage. The safety benefits of these applications will likely depend on many factors, such as usability, market penetration, driver acceptance, and reliability. Some applications, such as DNPW and IMA, require a longer communication range to be effective. In addition, Dedicated Short Range Communications (DSRC) may be required to communicate without direct line of sight. The signal needs to overcome shadowing effects of other vehicles and buildings that are in the way.
Journal Article

Preliminary Study of LIDAR Scanner-Based Collision Avoidance in Automated Guided Systems for Autonomous Power Equipment Products

2018-04-03
2018-01-0032
Technology is continuously being developed to prevent self-driving vehicles from crashing. That technology could also be considered for other autonomous products. Collision avoidance in automated guided systems using a light detection and ranging (LIDAR) scanner has been studied for application in low-speed autonomous Honda Power Equipment products, such as self-driving lawn mowers. The automotive application of a LIDAR scanner for autonomous driving is used for obstacle detection and offline local area. Such delineations do not exist in areas where power equipment is used, such as grass fields; therefore, identifying object height and distance is a relatively new area. For this study, a small LIDAR scanner with a resolution of 0.01 m and a measurement range of 0.05 to 40.00 m was used on a Honda self-driving lawn mower. The measurement distance data was directly processed in the scanner, enabling the drive unit to obtain distance information during actual operation.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

Indirect Measurement of Tire Slip and Understeer/Oversteer

2006-12-05
2006-01-3605
This paper presents a method for indirect measurement of tire slip angles from chassis acceleration, yaw rate, and steer angle measurements. The chassis is assumed to be rigid so that acceleration data can be integrated to estimate velocities of the front and rear of the vehicle, from which slip angles can be predicted. The difference in front and rear slip angles is indicative of vehicle oversteer/understeer. Understeer data can then be correlated with position on the track to better understand vehicle handling behavior, aiding the tuning process. The technique is presented, and shown to work well with simulated data, even when the data is corrupted with up to 20% noise. Therefore, the inversion process presented here is theoretically sound. However, when the technique is applied to measured data from race cars, it is shown to be inaccurate. One suspected problem is the difficulty of getting accurate yaw rate data.
Technical Paper

Real-time Thermal Observer for Electric Machines

2006-11-07
2006-01-3102
A temperature estimation algorithm (thermal observer) that provides accurate estimates of the thermal states of an electric machine in real time is presented. The thermal observer is designed to be a Kalman filter that combines thermal state predictions from a lumped-parameter thermal model of the electric machine with temperature measurements from a single external temperature sensor. An analysis based on the error covariance matrix of the Kalman filter is presented to guide the selection of the best sensor location. The thermal observer performance is demonstrated using a 3.8 kW permanent-magnet machine. Comparison of the thermal observer estimates and the actual temperatures demonstrate that this approach can provide accurate knowledge of the machine's thermal states despite modeling uncertainty and unknown initial machine thermal states.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

2007-09-17
2007-01-3910
There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

Lower Extremity and Brake Pedal Interaction in Frontal Collisions: Sled Tests

1998-02-23
980359
A series of eight sled tests was conducted using Hybrid III dummies and cadavers in order to examine the influence of foot placement on the brake pedal in frontal collisions. The brake pedal in the sled runs was fixed in a fully depressed position and the occupants' muscles were not tensed. The cadaver limbs and the Hybrid III lower extremities with 45° ankle and soft joint-stop were extensively instrumented to determine response during the crash event. Brake pedal reaction forces were measured using a six-axis load cell and high speed film was used for kinematic analysis of the crashes. Four right foot positions were identified from previous simulation studies as those orientations most likely to induce injury. In each test, the left foot was positioned on a simulated footrest, acting as a control variable that produced repeatable results in all dummy tests. Each of the different right foot orientations resulted in different loads and motions of the right leg and foot.
Technical Paper

Lower Extremity and Brake Pedal Interaction in Frontal Collisions: Computer Simulation

1998-02-23
980364
An Articulated Total Body frontal crash simulation was created with the dummy's right foot placed on the brake pedal. This study examined how interaction of the driver's foot with the brake pedal influenced the behavior of the lower extremities in frontal collisions. Braking parameters considered in the study included foot position on the pedal, whether or not the occupant's muscles were tensed and if the brake pedal was rigid or was allowed to depress. Two basic foot positions were identified as most likely to induce injury of the lower limb. One represented a foot that was pivoted about the heel from the gas pedal to the brake pedal. The other position replicated a foot that was lifted from the gas pedal to the brake pedal, resulting in an initial gap between the heel and floor. Both positions resulted in different loads and behavior of the foot, indicating that driver pre-impact position is a contributing factor to one's injury risk.
Technical Paper

Simulation of MADMEL Power Systems Components

1998-04-21
981258
Detailed computer models of system components for More Electric Aircraft have been developed using the Advanced Control System Language (ACSL) and its graphical front-end, Graphic Modeller. Among the devices modeled are a wound-rotor synchronous generator with parallel bridge-rectifier outputs, a switched-reluctance generator, and various loads including a DC-DC converter, an inverter-driven induction motor, and an electro-hydrostatic actuator. Results from the simulations are presented together with corroborating experimental test results.
Technical Paper

Model-based Development for Event-driven Applications using MATLAB: Audio Playback Case Study

2007-04-16
2007-01-0783
Audio playbacks are mechanisms which read data from a storage medium and produce commands and signals which an audio system turns into music. Playbacks are constantly changed to meet market demands, requiring that the control software be updated quickly and efficiently. This paper reviews a 12 month project using the MATLAB/Simulink/Stateflow environment for model-based development, system simulation, autocode generation, and hardware-in-the-loop (HIL) verification for playbacks which read music CDs or MP3 disks. Our team began with a “clean slate” approach to playback architecture, and demonstrated working units running production-ready code. This modular, layered architecture enables rapid development and verification of new playback mechanisms, thereby reducing the time needed to evaluate playback mechanisms and integrate into a complete infotainment system.
Technical Paper

Adoption Patterns for Precision Agriculture

1998-09-14
982041
Early experience with precision farming technology suggests that some hardware and software may follow a rapid S curve adoption path, but that the use of integrated precision farming systems may take longer to develop and be subject to false starts and periods of stagnation. Yield monitors appear to be following a classic S curve adoption path. Precision farming adoption is like that of hybrid corn because changes in organizations will be required to use it effectively. It is like motorized mechanization because it is coming on the market in an immature form and lends itself to farmer tinkering.
Technical Paper

Considerations for the Application of Magnetorheological Dampers to a Crossover SUV

2008-04-14
2008-01-0347
Magnetorheological (MR) dampers have been used in the market on various vehicles since 2001. They use a special oil-based fluid (Magnetorheological Fluid, MRF) that contains small iron particles (1-10 μm in size) and a controllable electromagnetic piston to allow a wide range of damping forces. The system's wide range of available damping force combined with nearly instantaneous response time helps maximize body control while simultaneously providing outstanding ride comfort. This paper describes how the MR technology was combined with conventional suspension tuning to achieve an enhanced level of dynamic performance. While the MR damper offers enhanced performance, its unique response characteristics require tuning of other hardware components that could be considered to be beyond the normal tuning range for that of a conventional suspension.
Technical Paper

Contact Life and Switching Behavior of Compact PCB Power Relays

2008-04-14
2008-01-0711
Power relays for mounting on printed circuit boards with just half of the case volume compared to low-profile ISO microrelays were tested in repetitious switching load operations. Operation voltage was 14 V and relay temperature was 120 °C. The tests for normally open type relays used lamps (11A) and horns (8A), and those for transfer (changeover) type relays used wiper motors (8.5A, intermittent operation). First failure cycles in each of the 10 relay tests were found to be of sufficiently high value, 2.2 million for lamps, 3.3 million for horns, and 2.4 million for wiper motors. Cycles at cumulative failure rates determined that the durability margins of the relays were acceptable for use.
Technical Paper

Optimization for Shared-Autonomy in Automotive Swarm Environment

2009-04-20
2009-01-0166
The need for greater capacity in automotive transportation (in the midst of constrained resources) and the convergence of key technologies from multiple domains may eventually produce the emergence of a “swarm” concept of operations. The swarm, a collection of vehicles traveling at high speeds and in close proximity, will require management techniques to ensure safe, efficient, and reliable vehicle interactions. We propose a shared-autonomy approach in which the strengths of both human drivers and machines are employed in concert for this management. A fuzzy logic-based control implementation is combined with a genetic algorithm to select the shared-autonomy architecture and sensor capabilities that optimize swarm operations.
X