Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Airflow Parameters Near the Differential of a Rear Drive Passenger Car

2001-03-05
2001-01-1015
The paper presents experimental analysis of the airflow around the differential center housing of a rear drive full-scale passenger car. The study included investigation of local airflow total and static pressure, as well as surface flow visualization. Estimation of the local airflow velocity is based on the measured pressure coefficients. The experiments were carried out at different test facilities: in a climatic wind tunnel, in a full-scale wind tunnel and on-road. Influence of side wind was modeled by the yawing of the car in the full-scale wind tunnel. The results show the asymmetrical structure of the flow in both, vertical and horizontal planes. Estimated longitudinal relative local velocity decreases from maximum Vr ≈ 0.4 at the lower surface of the center housing, to about Vr ≈ 0 above the upper surface. Side wind increases airflow velocity around the center housing within the investigated yaw range ± 20°
Technical Paper

Optical Characterization of Propane at Representative Spark Ignition, Gasoline Direct Injection Conditions

2016-04-05
2016-01-0842
The focus of internal combustion (IC) engine research is the improvement of fuel economy and the reduction of the tailpipe emissions of CO2 and other regulated pollutants. Promising solutions to this challenge include the use of both direct-injection (DI) and alternative fuels such as liquefied petroleum gas (LPG). This study uses Mie-scattering and schlieren imaging to resolve the liquid and vapor phases of propane and iso-octane, which serve as surrogates for LPG and gasoline respectively. These fuels are imaged in a constant volume chamber at conditions that are relevant to both naturally aspirated and boosted, gasoline direct injection (GDI) engines. It is observed that propane and iso-octane have different spray behaviors across these conditions. Iso-octane is subject to conventional spray breakup and evaporation in nearly all cases, while propane is heavily flash-boiling throughout the GDI operating map.
Technical Paper

Reduced Warm-Up and Recovery of the Exhaust and Coolant Heat with a Single Loop Turbo Steamer Integrated with the Engine Architecture in a Hybrid Electric Vehicle

2013-11-27
2013-01-2827
The paper considers a novel waste heat recovery (WHR) system integrated with the engine architecture in a hybrid electric vehicle (HEV) platform. The novel WHR system uses water as the working media and recovers both the internal combustion engine coolant and exhaust energy in a single loop. Results of preliminary simulations show a 6% better fuel economy over the cold start UDDS cycle only considering the better fuel usage with the WHR after the quicker warm-up but neglecting the reduced friction losses for the warmer temperatures over the full cycle.
Technical Paper

Analysis of the Regenerative Braking Efficiency of a Latest Electric Vehicle

2013-11-27
2013-01-2872
Kinetic energy recovery systems (KERS) placed on one axle coupled to a traditional thermal engine on the other axle is possibly the best solution presently available to dramatically improve the fuel economy while providing better performances within strict budget constraints. Different KERS may be built purely electric, purely mechanic, or hybrid mechanic/electric differing for round trip efficiency, packaging, weights, costs and requirement of further research and development. The paper presents an experimental analysis of the energy flow to and from the battery of a latest Nissan Leaf covering the Urban Dynamometer Driving Schedule (UDDS). This analysis provides a state-of-the-art benchmark of the propulsion and regenerative braking efficiencies of electric vehicles with off-the-shelve technologies.
Technical Paper

A Method of Flow Measurement About Full-Scale and Model-Scale Vehicles

2000-03-06
2000-01-0871
High-frequency pressure probes were used to map the airflow around a full-scale truck during on-road testing and around a model-scale truck during wind tunnel testing. Several configurations were tested during each type of testing. Results are presented for on-road ‘pass-by’ tests and detail velocity and coefficient of pressure variation alongside the truck at different heights. The wind tunnel data are results of flow mapping about a 10% scale model and show the velocity and coefficient of pressure distribution under and around the model truck for different configurations.
Technical Paper

Air Entrainment in Gaseous Fuel Jets Using Particle Image Velocimetry and High Speed Schlieren Photography in a Constant Volume Chamber

2015-04-14
2015-01-0938
The air entrainment process of a compressed natural gas transient fuel jet was investigated in a constant-volume chamber using Schlieren and particle image velocimetry (PIV) techniques. A new method of calculating air entrainment around a gaseous fuel jet is proposed using Schlieren and PIV imaging techniques. This method offers an alternative to calculation of an alternative to calculation of entrainment using LIF technique in gaseous fuel jets. Several Jet-ambient pressure ratios were tested. In each test, nitrogen was used to fill the chamber as an air surrogate before the jet of natural gas was injected. Schlieren high speed videography and PIV experiments were performed at the same conditions. Schlieren mask images were used to accurately identify the jet boundary which was then superimposed onto a PIV image. Vectors adjacent to the Schlieren mask in the PIV image were used to calculate the spatial distribution of the air entrainment at the jet boundary.
Book

Kinetic Energy Recovery Systems for Racing Cars

2013-04-02
A kinetic energy recover system (KERS) captures the kinetic energy that results when brakes are applied to a moving vehicle. The recovered energy can be stored in a flywheel or battery and used later, to help boost acceleration. KERS helps transfer what was formerly wasted energy into useful energy. In 2009, the Federation Internationale de l’Automobile (FIA) began allowing KERS to be used in Formula One (F1) competition. Still considered experimental, this technology is undergoing development in the racing world but has yet to become mainstream for production vehicles. The Introduction of this book details the theory behind the KERS concept. It describes how kinetic energy can be recovered, and the mechanical and electric systems for storing it. Flybrid systems are highlighted since they are the most popular KERS developed thus far. The KERS of two racing vehicles are profiled: the Dyson Lola LMP1 and Audi R18 e-tron Quattro.
X