Refine Your Search

Topic

Author

Search Results

Journal Article

Resource-Aware Control - Model-Based Co-Engineering of Control Algorithms and Real-Time Systems

2015-04-14
2015-01-0168
The underlying theories of both control engineering and real-time systems engineering assume idealized system abstractions that mutually neglect central aspects of the other discipline. Control engineering theory, on the one hand, usually assumes jitter free sampling and constant input-output latencies disregarding complex real-world timing effects. Real-time engineering theory, on the other hand, uses abstract performance models that neglect the functional behavior, and derives worst-case situations that have little expressiveness for control functionalities in physically dominated automotive systems. As a consequence, there is a lot of potential for a systematic co-engineering between both disciplines, increasing design efficiency and confidence. We have taken a standard control-engineering tool, Simulink, and combined it with state-of-the-art real-time system design and analysis tools, SymTA/S and TraceAnalyzer from Symtavision.
Technical Paper

Prediction of Internal Responses Due to Changes in Boundary Conditions Using System Frequency Response Functions

2021-08-31
2021-01-1058
Vibration testing is often carried out for automotive components to meet guidelines based on their operational environments. This is an iterative process wherein design changes may need to be made depending on an intermediate model’s dynamic behavior. Predicting the behavior based on modifications in boundary conditions of a well-defined numerical model imparts practical insights to the component’s responses. To this end, application of a general method using experimental free-free condition frequency response functions of a structure is discussed in the presented work. The procedure is shown to be useful for prediction of responses when kinematic boundary conditions are applied, without the need for an actual measurement. This approach is outlined in the paper and is applied to datasets where dynamic modifications are made at multiple boundary nodes.
Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Technical Paper

More Safety with Vehicle Stability Control

2007-01-28
2007-01-2759
Since introduction of safety belts in the 70s and airbags in the early 80s, these passive safety technologies have become standard in many markets. Remarkable improvement in passive safety, efforts to alter driver behaviour and infrastructural programmes have led to substantial reductions of fatalities in many regions, although the absolute number of highway fatalities increased e.g. in the USA in 2002 to the highest level since 1990. Electronic Stability Control (ESC) as an active safety technology assists the driver to keep the vehicle on the intended track and thereby actively prevents accidents. In 1995 Bosch was the first supplier to introduce ESC for the Mercedes-Benz S-Class, where it is marketed as ESP® - Electronic Stability Program. Since then, Bosch has produced more than 30 million systems worldwide. Many studies have now confirmed that ESC can prevent a vehicle from skidding or rolling over in nearly all driving situations.
Technical Paper

Luminance Measurement, Contrast Sensitivity, Homogeneity: New Approaches of Defining the Quality of Headlamps

1998-02-23
980324
The conventional measurements to describe the photometric quality of headlamps usually only comprise the luminous flux and the illuminance (resp. the luminous intensity) in several measuring points given by Type Approval Legislation. Practically, these photometric measurements do not describe the visual impression of a headlamp light distribution sufficiently, neither in lab nor in real street geometry. With the clear outer lens headlamps introduced recently, filament images are projected directly onto the screens or streets, thus giving new impulses to research. Starting from the established photometric practice, other types of measurements and physiological fundamentals will be discussed. The basic tools to make physical measurement and physiological impression comparable, e.g. in terms of homogeneity, are shown.
Technical Paper

Domain Control Units - the Solution for Future E/E Architectures?

2010-04-12
2010-01-0686
In order to master the increasing complexity of electrical/electronic (E/E) systems in vehicles, E/E architecture design has become an established discipline. The task of the E/E architecture design is to come up with solutions to challenging and often contradictory requirements such as reduced cost and increased flexibility / scalability. One way to optimize the E/E architecture in terms of cost (electronics & wiring harness) is to integrate functions. This can be done by either combining functions from multiple ECUs into a single ECU or by introducing Domain Control Units. Domain Control Units provide the main software functionality for a vehicle domain, while relegating the basic functions of actuator control to connected intelligent actuators. Depending on the different market segments (low price, volume and premium) and the different vehicle domains, the actual usage of Domain Control Units can be quite different and sometimes questionable.
Technical Paper

A Case Study in Applying a Product Line Approach for Car Periphery Supervision Systems

2001-03-05
2001-01-0025
Car Periphery Supervision (CPS) systems comprise a family of automotive systems that are based on sensors installed around the vehicle to monitor its environment. The measurement and evaluation of sensor data enables the realization of several kinds of higher level applications such as parking assistance or blind spot detection. Although a lot of similarity can be identified among CPS applications, these systems are traditionally built separately. Usually, each single system is built with its own electronic control unit, and it is likely that the application software is bound to the controller's hardware. Current systems engineering therefore often leads to a large number of inflexible, dedicated systems in the automobile that together consume a large amount of power, weight, and installation space and produce high manufacturing and maintenance costs.
Technical Paper

Preparing for CARTRONIC - Interface and New Strategies for Torque Coordination and Conversion in a Spark Ignition Engine-Management System

2001-03-05
2001-01-0268
A major trend in modern vehicle control is the increase of complexity and interaction of formerly autonomous systems. In order to manage the resulting network of more and more integrated (sub)systems Bosch has developed an open architecture called CARTRONIC for structuring the entire vehicle control system. Structuring the system in functionally independent components improves modular software development and allows the integration of new elements such as integrated starter/generator and the implementation of advanced control concepts as drive train management. This approach leads to an open structure on a high level for the design of advanced vehicle control systems. The paper describes the integration of the spark-ignition (SI) engine management system (EMS) into a CARTRONIC conform vehicle coordination requiring a new standard interface between the vehicle coordination and the EMS level.
Technical Paper

Integration of a Structuring Concept for Vehicle Control Systems into the Software Development Process using UML Modelling Methods

2001-03-05
2001-01-0066
The demand for more security, economy, and comfort as well as for a reduced environmental impact increases the importance of electronic components for vehicles. The development of such systems is determined by the requirement of an improved functionality and co-requisite the demand for limited costs. In order to fulfil these demands and taking into consideration the increase of complexity and the melting together to a car wide web, Bosch is developing a structuring concept called CARTRONIC®. This concept is supposed to be open and neutral regarding automotive manufactures and suppliers. The analysis of vehicle control systems via this method is based on formal rules for structuring and modelling. The function-related aspect of CARTRONIC® was represented already at the SAE'98 World Congress. Furthermore the safety-related feature was introduced in more detail at the SAE'99 World Congress. The result of the analysis is an object structure of logical components with defined interfaces.
Technical Paper

CARTRONIC® Based Safety Analysis: Introducing Safety Aspects In Early Development Phases

2002-03-04
2002-01-0269
This article gives an overview of the CARTRONIC® based safety analysis (CSA) including an approach for the automatic determination of failure dependencies in automotive systems. CSA is a safety analysis in an early stage of product development. The goals are to identify safety critical components as soon as practicable in the product development process and to automate the analysis as far as possible. This implies that the system view is abstract, i.e. independent of a certain realization just regarding system functionality. In the CSA so called global failure effects will be systematically identified and assessed regarding severity of potential injuries. Global failure effects are especially important because they reveal failures within the system to the outside world (see also definition 3.1). Additionally the CSA keeps track of failure dependencies and supports the integration of safety measures in the system structure.
Technical Paper

Integration of Time Triggered CAN (TTCAN_TC)

2002-03-04
2002-01-0263
Time Triggered CAN (TTCAN) is an extension of the well-known CAN protocol, introducing to CAN networks time triggered communication and a system wide global network time with high precision. Time Triggered CAN has been accepted as international standard ISOCD11898-4. The time triggered communication is built upon the unchanged standard CAN protocol. This allows a software implementation of the time triggered function of TTCAN, based on existing CAN ICs. The high precision global time however requires a hardware implementation. A hardware implementation also offers additional functions like time mark interrupts, a stopwatch, and a synchronization to external events, all independent of software latency times. The TTCAN testchip (TTCAN_TC) is a standalone TTCAN controller and has been produced as a solution to the hen/egg problem of hardware availability versus tool support and research.
Technical Paper

Evaluating Different Measures to Improve the Numerical Simulation of the Mixture Formation in a Spark-Ignition CNG-DI-Engine

2017-03-28
2017-01-0567
Compressed Natural Gas (CNG) is a promising alternative fuel for internal combustion engines as its combustion is fuel-efficient and lean in carbon dioxide compared to gasoline. The high octane number of methane gives rise to significant increase of the thermodynamic efficiency due to higher possible compression ratios. In order to use this potential, new stratified mixture formation concepts for CNG are investigated by means of numerical fluid simulations. For decades RANS methods have been the industry standard to model three-dimensional flows. Indeed, there are well-known deficiencies of the widely used eddy viscosity turbulence models based on the applied Boussinesq hypothesis. Reynolds stress turbulence models as well as scale resolving simulation approaches can be appealing alternative choices since they offer higher accuracy. However, due to their large computing effort, they are still mostly impractical for the daily use in industrial product development processes.
Technical Paper

Flex Fuel Software Maintainability Improvement: A Case Study

2016-10-25
2016-36-0214
Many software functions currently available in the engine control units have been developed for several years (decades in some cases), reengineered or adapted due to new requirements, what may add to their inherent complexity an unnecessary complication. This paper deals with the study and implementation of a software reengineering strategy for the embedded domain, which is in transfer from research department to product development, here applied to improve maintainability of flex fuel functions. The strategy uses the SCODE “Essential Analysis”, an approach for the embedded system domain. The method allows to reduce the system complexity to the unavoidable inherent problem complexity, by decomposing the system into smaller sub problems based on its essential physics. A case study was carried out to redesign a function of fuel adaptation. The analysis was performed with the support of a tool, which covers all the phases of the method.
Technical Paper

Integration Strategy of Safety Systems - Status and Outlook

2016-04-05
2016-01-1499
On the way to automated driving, the installation rate of surround sensing systems will rapidly increase in the upcoming years. The respective technical progress in the areas of driver assistance and active safety leads to a numerous and valuable information and signals to be used prior to, during and even after an accident. Car makers and suppliers can make use of this new situation and develop integrated safety functions to further reduce the number of injured and even deaths in car accidents. Nevertheless, the base occupant safety remains the core of this integrated safety system in order to ensure at least a state-of-the-art protection even in vehicles including partial, high or full automation. Current networked safety systems comprehend a point-to-point connection between single components of active and safety systems. The optimal integration requires a much deeper and holistic approach.
Technical Paper

ISO 26262 Release Just Ahead: Remaining Problems and Proposals for Solutions

2011-04-12
2011-01-1000
The release of ISO 26262 is only about three months after the 2011 World Congress. However, there are still some contentious aspects that can introduce challenges or cause a disproportionate effort. In this paper, we will show how to avoid these problems. ISO 26262 provides a detailed method for classifying the Automotive Safely Integrity Level (ASIL) of in-vehicle electronic systems. However, the ASIL value for a specific function/product can vary significantly across the industry. Applying a lower level than the industry norm can cause substantial liability problems. Applying a higher level can initiate an “arms race” with competitors. This is particularly true if there are no vehicle-related reasons for choosing the higher level or if it doesn't make the product any safer. To encourage international harmonization, this paper will define ASIL classifications for the main automotive components. Most functions/products are currently being developed using parts of existing products.
Technical Paper

CARTRONIC - An Open Architecture for Networking the Control Systems of an Automobile

1998-02-23
980200
The car industry has reached a point where electronic systems, which were so far essentially autonomous, begin to grow together to a Car-Wide Web. The main driving force is the demand for more safety, security, and comfort implemented economically. Already various parties are working on control networks. In the long run, vehicle motion and dynamic systems, safety, security, comfort as well as mobile multimedia systems will integrate and reach out for the vision of accident-free, comfortable, and well-informed driving. As a foundation for a Car-Wide Web, Bosch is developing an open architecture called CARTRONIC. The essence of CARTRONIC is to define structuring rules, modeling rules and patterns for total, integrated control of vehicles. The rules and patterns allow the mapping of high-level functions onto several physical implementations, for instance one logical description of functional connections could be created for cars with different equipment packages.
Technical Paper

Adaptive Cruise Control System Aspects and Development Trends

1996-02-01
961010
This paper is based on the experiences with Adaptive Cruise Control (ACC) systems at BOSCH. Necessary components (especially range sensor, curve sensors, actuators and display) are described, roughly specified, and their respective strength and weaknesses are addressed. The system overview contains the basic structure, the main control strategy and the concept for driver-ACC interaction. Afterwards the principal as well as the current technical limits of ACC systems are discussed. The consequences on traffic flow, safety and driver behavior are emphasized. As an outlook, development trends for extended functionality are given for the next generation of driver assistance systems.
Technical Paper

AutoMoDe - Notations, Methods, and Tools for Model-Based Development of Automotive Software

2005-04-11
2005-01-1281
This paper describes the first results from the AutoMoDe project (Automotive Model-based Development), where an integrated methodology for model-based development of automotive control software is being developed. The results presented include a number of problem-oriented graphical notations, based on a formally defined operational model, which are associated with system views for various degrees of abstraction. It is shown how the approach can be used for partitioning comprehensive system designs for subsequent implementation-related tasks. Recent experiences from a case study of an engine management system, specific issues related to reengineering, and the current status of CASE-tool support are also presented.
Technical Paper

Safety and Performance Enhancement: The Bosch Electronic Stability Control (ESP)

2004-10-18
2004-21-0060
In spite of improvements in passive safety and efforts to alter driver behavior, the absolute number of highway fatalities in 2002 increased to the highest level since 1990 in the US. ESP is an active safety technology that assists the driver to keep the vehicle on the intended path and thereby helps to prevent accidents. ESP is especially effective in keeping the vehicle on the road and mitigating rollover accidents which account for over 1/3 of all fatalities in single vehicle accidents. In 1995 Bosch was the first supplier to introduce electronic stability control (ESC) for the Mercedes-Benz S-Class sedan. Since then, Bosch has produced more than 10 million systems worldwide which are marketed as ESP - Electronic Stability Program. In this report Bosch will present ESP contributions to active safety and the required adaptations to support four wheel driven vehicles and to mitigate rollover situations.
Technical Paper

A User-Friendly Program System for Digital Simulation of Hydraulic Equipment

1985-02-01
850532
Mathematical modelling has proved to be a valuable tool for understanding the performance of diesel injection systems. There are several programs for the simulation of conventional injection equipment, but up to now it has been very expensive to simulate new concepts of injection equipment. Therefore a general program system for simulation of transient hydraulic processes - especially in diesel injection systems - has been developped. By this system, any new injection equipment can be simulated user-friendly and without needing to write new programs. The differential equations are solved by mathematical methods, which promise stability in all conditions and offer short calculation times. Since 1983 the program system has been applied to a lot of non-conventional and conventional injection systems and has proved its reliability.
X