Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Influence of Nozzle Geometry on Spray Atomization and Shape for Port Fuel Injector

2001-03-05
2001-01-0608
Understanding the disintegration process and geometric effects on spray characteristics are of importance in the design of a high quality injector, because improving fuel atomization and targeting has been proved to be an effective way to reduce the exhaust hydrocarbon emissions for gasoline engines. To reveal the relationship between the internal flow and the spray characteristics, particle size measurements and computational fluid dynamics (CFD) were combined to analyze a set of orifices. The flow field inside the nozzle, as well as the direction and shape of the liquid jet in the vicinity of the nozzle exit, was numerically predicted. Spray droplet sizes were then measured for the same orifices. Interesting links were discovered between nozzle geometry and spray characteristics. The results indicate that the secondary flow inside the orifice hole, due to Vena Contracta phenomena, contributes greatly to the atomization and shape of the liquid jets.
Technical Paper

The New BMW Climatic Testing Complex - The Energy and Environment Test Centre

2011-04-12
2011-01-0167
The Energy and Environment Test Centre (EVZ) is a complex comprising three large climatic wind tunnels, two smaller test chambers, nine soak rooms and support infrastructure. The capabilities of the wind tunnels and chambers are varied, and as a whole give BMW the ability to test at practically all conditions experienced by their vehicles, worldwide. The three wind tunnels have been designed for differing test capabilities, but share the same air circuit design, which has been optimized for energy consumption yet is compact for its large, 8.4 m₂, nozzle cross-section. The wind tunnel test section was designed to meet demanding aerodynamic specifications, including a limit on the axial static pressure gradient and low frequency static pressure fluctuations - design parameters previously reserved for larger aerodynamic or aero-acoustic wind tunnels. The aerodynamic design was achieved, in-part, by use of computational fluid dynamics and a purpose-built model wind tunnel.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Technical Paper

Simulation Driven Design of HVAC Systems under Competing HVAC Noise and Defrost Performance Requirements

2021-08-31
2021-01-1020
It is particularly easy to get tunnel vision as a domain expert, and focus only on the improvements one could provide in their area of expertise. To make matters worse, many Original Equipment Manufacturers (OEMs) are silo-ed by domain of expertise, unconsciously promoting this single mindedness in design. Unfortunately, the successful and profitable development of a vehicle is dependent on the delicate balance of performance across many domains, involving multiple physics and departments. Taking for instance the design of a Heating, Ventilation & Air Conditioning (HVAC) system, the device’s primary function is to control the climate system in vehicle cabins, and more importantly to make sure that critical areas on the windshield can be defrosted in cold weather conditions within regulation time. With the advent of electric and autonomous vehicles, further importance is now also placed on the energy efficiency of the HVAC, and its noise.
Technical Paper

Investigations of Automotive Defroster and Windshield Flow

2001-10-01
2001-01-3441
The specification of automotive ventilation / defrosting systems has often utilized “trial-and-error” and “prior experience” techniques. But design development and production efficiency has generated a strong interest in using more sophisticated design tools such as computational fluid dynamics. For this purpose a joint experimental and numerical study was undertaken. This comprehensive investigation was divided into two parts. First, the three dimensional defroster flow field was measured using LDA in an actual automobile. Second, LDA and infrared thermography was used to map the flow and temperature fields for a two dimensional jet impinging upon a slanted plate -- a simplified representation of a car defroster geometry.
X