Refine Your Search

Topic

Search Results

Technical Paper

An Interval Analysis and Optimization Method for Generated Axial Force of Automotive Drive Shaft Systems

2020-04-14
2020-01-0918
To study the generated axial force (GAF) of the drive shaft system more accurately and effectively, this paper introduces the interval uncertainty into the research focusing on the GAF. Firstly, an interval uncertainty model for calculating the GAF is proposed based on the Chebyshev polynomials and an analytical model of the GAF. The input torque, the articulation angle, the rotation angle of the drive shaft system, the pitch circle radius (PCR) of the tripod joint and the friction coefficient are regarded as interval variables. Secondly, the upper and lower bounds of the proposed GAF model under interval uncertainty parameters are calculated quickly with the vertex method. Then the interval uncertainty optimization of the GAF under uncertainty parameters is performed. The upper bound of the response interval of the GAF is taken as the optimization object.
Technical Paper

Research on Fractal Friction Model between Balls and Arc Raceways inside a Ball Joint

2020-04-14
2020-01-1093
During the operation of the ball joint, its service life and transmission efficiency are affected by the internal friction. Taking the ball joint as the research object, based on fractal theory, the friction between the steel ball and the raceway inside the ball joint of an automotive drive shaft system is studied in this paper. During the analysis, the friction between the steel ball and the arc raceway is regarded as the friction between a sphere and an arc raceway surface. In order to describe the friction state more accurately, this paper proposes a correction coefficient to modify the distribution function of contact asperities in the plane, and obtains the distribution function of contact asperities between the sphere and the arc raceway surface. The correction coefficient is related to the load, the size parameters and the material parameters of the steel ball and the raceway.
Technical Paper

Study on Steering Angle Input during the Automated Lane Change of Electric Vehicle

2017-09-23
2017-01-1962
The trajectory planning and the accurate path tracking are the two key technologies to realize the intelligent driving. The research of the steering wheel angle plays an important role in the path tracking. The purpose of this study is to optimize the steering wheel angle input during the automated lane changing. A dynamic programming approach to trajectory planning is proposed in this study, which is expected to not only achieve a quick reaction to the changing driving environment, but also optimize the balance between vehicle performance and driving efficiency. First of all, the lane changing trajectory is planned based on the positive and negative trapezoidal lateral acceleration method. In addition, the multi-objective optimization function is built which includes such indexes: lateral acceleration, lateral acceleration rate, yaw rate, lane changing time and lane changing distance.
Technical Paper

Effect of Magnetic Nanorefrigerant on Electric Vehicle

2017-10-08
2017-01-2222
The ever increasing popularity of electric vehicles and higher requirement on safety and comfort has led heat pump air conditioning system indispensable in electric vehicle. Many studies have shown that the addition of nano particles contributes to great improvement on thermal conductivity than that of conventional refrigerants. Therefore, the application of the magnetic nanorefrigerant in heat pump air conditioning system has massive potential to heighten the heat transfer efficiency. This paper aims at studying the magnetic nanorefrigerant comprised of the magnetic nano powder Fe3O4 and refrigerant R134a. According to the relevant theoretical analyses and empirical formula, the heat transfer coefficient, density, viscosity, and other physical parameters are calculated approximately. In the heat pump air conditioning system of a certain type of electric vehicle, the special working condition parameters are selected to carry out calculation analysis with numerical analysis software.
Technical Paper

A Method for Calculating High Frequency Dynamic Characteristics of Rubber Isolators under Different Preloads

2022-03-29
2022-01-0307
Because the power unit of electric vehicle has large torque, the rubber mount of electric vehicle is fully compressed under the condition of full throttle acceleration. When designing the mount of electric vehicle, the dynamic-to-static stiffness ratio of mount under the case should be as low as possible to improve the vibration isolation rate of the mount. In this paper, a method for calculating the high frequency dynamic characteristics of rubber isolators under different preloads is presented. Firstly, the dynamic characteristics of rubber specimens under various shear pre-strains were tested. The test results show that the dynamic stiffness of specimen decreases at first and then increases with the increase of shear strain. The viscoelastic parameters of rubber in frequency domain under different pre-strain were identified according to the experimental data. Secondly, a finite element modeling method was proposed.
Technical Paper

Numerical Investigation of Solenoid Valve Flow Field in Decoupled Brake-by-Wire System

2021-04-06
2021-01-0806
The decoupling brake-by-wire system controls the key components of the flow path and liquid flow of the whole brake system through the solenoid valve of the bottom control unit. The reference cross-sectional area value at the valve inlet is obtained by calculation, and the valve body structure model is established. The flow channel structure is extracted, and the porous media model is used to replace the fluid area of the filter screen at the entrance of the solenoid valve. The Fluent software is used to analyze the influence on the flow characteristics of the solenoid valve with or without a filter. The accuracy of the model is verified by the experimental results, which also show that the porous medium can effectively and accurately reflect the characteristics of the solenoid valve end filter.
Technical Paper

Numerical Investigation of the Static Characteristics of Solenoid Valve in Decoupled Brake-by-Wire System

2021-04-06
2021-01-0804
The static characteristics of solenoid valve play an important role in the performance of brake system and can indirectly reflect the response speed of the brake system. The static characteristics of the solenoid valve reflect the electromagnetic characteristics of the solenoid valve itself, revealing the maximum potential of the solenoid valve in the system work, which is one of the important characteristics to characterize the working ability of the solenoid valve. In this paper, a numerical calculation method is used to build a finite element model of the solenoid valve electromagnetic field on the Ansoft Maxwell simulation platform. The model takes into account the nonlinear magnetization characteristics of soft magnetic materials and the air gap.
Technical Paper

Experimental Study on Hydraulic Pressure Feedforward and Feedback PID Control of I-EHB System with Friction Disturbance

2021-04-06
2021-01-0979
This paper designs the important components and structure of the integrated electro-hydraulic brake system (I-EHB). Firstly, the simplified linear system is modeled, and the transfer function without considering the nonlinear disturbance such as system friction is derived, and the correctness of the linear system is preliminarily verified by AMESim. Then set up the I-EHB system test bench, and use the Stribeck friction model to identify the friction torque parameters in the static and kinetic friction stages of the system to obtain a more accurate friction model. Finally, based on the I-EHB system model of friction disturbance, a pressure-speed-current three-loop cascade PID controller is designed, and a feedforward controller based on the system model is added to form the control structure of “pressure feedforward compensation + pressure-speed-current closed-loop cascade PID”.
Technical Paper

Study on the Influence of Air Suspension Levelling Valve Charging and Discharging Characteristics on Heavy Truck Roll Stability

2021-04-06
2021-01-0980
Roll stability is an important attribute which must be accounted for in heavy trucks. In order to analyze the anti-roll performance of the suspension in the early period of development, engineers will generally use Multi Body Dynamics (MBD) simulation software which can save time in the product development cycle. However, air suspension employs levelling valves to adjust the height by charging and discharging air springs. The air spring is typically modeled as a closed container in the simulation; the stiffness change of the air spring caused by the levelling valve is not considered. In this paper, an air suspension with levelling valves model integrated into the multi-body dynamic model of a 6�4 heavy truck is built with a co-simulation technique to investigate the influence of three types of levelling valves arrangement on the roll performance of the suspension under two typical conditions.
Technical Paper

Frequency Conversion Controlled Vapor Recovery System by Temperature and Flow Signals: Model Design and Parameters Optimization

2013-09-24
2013-01-2348
Current gasoline-gas vapor recovery system is incomplete, for it cannot adjust the vapor-liquid ratio automatically due to the change of working temperature. To solve this problem, this paper intends to design a new system and optimize its parameters. In this research, variables control method is used for tests while linear regression is used for data processing. This new system moves proportion valve away and adds a DSP control module, a frequency conversion device, and a temperature sensor. With this research, it is clearly reviewed that the vapor-liquid ratio should remains 1.0 from 0 °C to 20 °C as its working temperature, be changed into 1.1 from 20 °C to 25 °C, be changed into 1.2 from 25 °C to 30 °C, and be changed into 1.3 when the working temperature is above 30 °C.
Technical Paper

Analysis and Experimental Research on Whine Noise of the Engine Balance Shaft Gear System

2023-05-08
2023-01-1152
An Inline 4-cylinder engine is equipped with second-order balance shafts. When the engine is running under no-load acceleration conditions, the gear system of the balance shaft generated whine noise. In this paper, an analysis and experiment method for reducing the whine noise is presented. First, a flexible multi-body dynamic model of the engine is established, which includes shaft and casing deformation, micro-modification of the gears. Taking the measured cylinder pressure as input, the load on each gear of balance shaft gear system is calculated. In addition, the influence of tooth surface micro-modification on the meshed noise was analyzed. The results show that the dynamic meshing force between the crank gear and the shim gear is large under the original tooth surface micro-modification parameters, which is the main reason of the whine noise.
Technical Paper

Mass Flow Rate Prediction of Electronic Expansion Valve Based on Improved Particle Swarm Optimization Back-Propagation Neural Network Algorithm

2022-03-29
2022-01-0181
Electronic expansion valve as a throttle element is widely used in heat pump systems and flow characteristics are its most important parameter. The flow characteristics of the electronic expansion valve (EXV) with a valve port diameter of 3mm are studied, when the refrigerant R134a is used as the working fluid. The main factors affecting the flow characteristics are researched by adopting the orthogonal experiment method and single factor control method, for example, inlet pressure, inlet temperature, outlet pressure and valve opening. The results show that the expansion valve opening degree has the greatest influence on mass flow rate. In view of the complicated phase change of the refrigerant passing through electronic expansion valve, it is difficult to model the flow characteristics accurately.
Technical Paper

Dynamic Modeling Method of Electric Vehicle Thermal Management System Based on Improved Moving Boundary Method

2022-03-29
2022-01-0183
The thermal management system, which is used to improve driving safety and thermal comfort, is one of the most important systems in electric vehicles. In recent years, researchers have coupled the heat pump system and the battery cooling system to effectively improve the heating COP (Coefficient of Performance). Therefore an accurate dynamic model of thermal management system plays a key role in investigating system performance and optimal control strategies. In this paper, an electric vehicle thermal management system based on four-way valve heat pump system is designed. The moving boundary method is improved by considering the unsteady flow of the external fluid, and then a 13-order dynamic model of the thermal management system is established. Firstly, the control equations of evaporator, condenser and chiller are derived according to the principle of conservation, and then a dynamic model of thermal management system is established in Simulink.
Technical Paper

A Study on Editing Method of Road Load Spectrum of Automobile Rubber Isolator Using Time-Frequency Domain Methods

2022-03-29
2022-01-0272
In order to enhance the efficiency of durability testing of automobile parts, a time-frequency domain accelerated editing method of road load time series of rubber mount on powertrain was discussed. Based on Stockwell Transform method and Accumulative Power Spectral Density, a new time-frequency domain accelerated editing method (ST-APSD) was proposed. The accumulative power spectral density was obtained by ST of the load time series signal of automobile powertrain rubber mounting force which is acquired by the real vehicle in the test field. Based on the accumulative power spectral density, the threshold value was proposed to identify and delete the small damage load fragments, and then the acceleration spectrum was obtained.
Journal Article

Modeling Method of Dynamic Characteristics of Hydraulic Damping Rubber Isolator

2022-03-29
2022-01-0282
The dynamic characteristics of hydraulic damping rubber isolators (such as hydraulic bushing and hydraulic mount) are related to excitation amplitude and frequency. Based on the lumped parameter model of hydraulic damping rubber isolator, a unified linear model of complex stiffness is derived and its deficiency is pointed out. Based on the derived linear model, this paper considers the nonlinear damping of inertia channel and the nonlinear stiffness of the upper chamber of the hydraulic damping rubber isolator, so as to establish a new nonlinear model, which can reflect the amplitude and frequency dependence of the dynamic characteristics of the hydraulic damping rubber isolator. Finally, the nonlinear model is used to analyze the dynamic response of hydraulic damping rubber isolator under harmonic excitation and random excitation respectively, and the results are compared with the test results.
Technical Paper

Modeling and Analysis of the Hysteresis Behavior of the Tensioner

2022-03-29
2022-01-0609
The tensioner of the engine front end accessory drive system was taken as a study object, and the mechanical structure and working principle of the automatic tensioner were analyzed. The hysteresis behavior test of tensioner torque-angular displacement was carried out, and the effects of different excitation frequencies and excitation amplitudes on the hysteresis behavior of the tensioner were analyzed. According to the modified Dahl hysteresis model, the model parameters of the tensioner was identified. Based on the identified model parameters, the hysteresis behavior of the tensioner was calculated, and the calculation model accuracy was verified with the tested results. The influence of the hysteresis curve transition area exponent on the tensioner behavior was studied. The dynamic behavior of the engine front end accessory drive system was simulated using the simulation software.
Technical Paper

Study on Flow Rate and Flow Field Characteristics of Gerotor Pump with Multi-arc Combined Profile

2022-03-29
2022-01-0632
The working principle and performance test method of the gerotor pump with multi-arc combined profile are introduced. According to the formation method of the rotor tooth profile, the calculation method of the inner rotor tooth profile is introduced, and the meshing characteristics of the inner and outer rotors are analyzed. On this basis, a calculation method for the displacement and instantaneous flow rate of the gerotor pump with multi-arc combined profile is proposed. In addition, a calculation model of the flow field characteristics of the gerotor pump with multi-arc combined profile is established, and the validity of the model is verified by experiments. Based on the model of traditional single-arc gerotor pump and the model of the gerotor pump with multi-arc combined profile, the flow rate, internal flow velocity, pressure distribution and gas volume fraction distribution under different working conditions are calculated respectively.
Technical Paper

Modeling of Gas Charging and Discharging for Airbag Suspension System and Control of Height Adjustment

2023-04-11
2023-01-0660
Taking a closed airbag suspension system as studying objects, the nonlinear dynamic model of the reservoir, compressor, solenoid valve, pipeline and air spring is established. The compressor exhaust volume, solenoid valve flow rate and air spring charging and discharging rate are calculated and compared with experiment to validate the model. Taking pressure difference and height adjustment rate under different working conditions of an airbag suspension as control measures, a control strategy is developed based on the established nonlinear dynamic model. The result indicates that when the vehicle is in curb weight, design weight and GVW (gross vehicle weight), the working time of the compressor can be reduced by 13.6%, 15.1% and 46.5%, respectively, compared with the conventional mode, during a height adjustment cycle. Then a state observer is proposed to estimate the steady-height for reducing the disturbance of measured height from road excitation.
Technical Paper

Fault Feature Extraction of Elliptically Shaped Bearing Raceway

2019-06-05
2019-01-1564
The elliptically shaped bearing (ESB) with a rigid, elliptical inner race and a flexible, thin-walled outer race is the most easily damaged core component of harmonic drive. The ESB rotates under cycle load of alternating stress due to its special elliptic structure. Hence, the fault features of ESB such as fatigue spalling and pitting are apt to be concealed by the excitation of impulses caused by alternating between major axis and minor axis. In order to diagnose the fault on raceway surfaces of ESB, a new method of CMWT-FH based on Continuous Morlet Wavelet Transform (CMWT) and FFT-based Hilbert (FH) spectrum analysis is proposed to extract the fault feature.
Technical Paper

Vibration Analysis of an Electric Vehicle Mounting System under Transient Shock Conditions

2021-04-06
2021-01-0664
Electric vehicle motors have the characteristics of fast torque response, large amplitude, and braking feedback torque. Therefore, the excitation of the electric vehicle powertrain has obvious transient impact characteristics, which put forward new requirements for the design of the mounting system. This article carried out the real vehicle test of rapid acceleration and rapid deceleration. A 12-degree-of-freedom nonlinear dynamic model of the electric vehicle mounting system is established. The model is used to calculate the vibration acceleration of the active side and the passive side of the mount, and compared with the test value to verify the correctness of the simulation model. The impact degree, the maximum pitch angle of the powertrain, and the longitudinal acceleration of the powertrain centroid are used as evaluation indicators to analyze the transient response of the electric vehicle mounting system under rapid acceleration and rapid deceleration conditions.
X