Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of EGR Dilution and Fuels on Spark Plug Temperatures in Gasoline Engines

2013-04-08
2013-01-1632
The addition of exhaust gas recirculation (EGR) has demonstrated the potential to significantly improve engine efficiency by allowing high CR operation due to a reduction in knock tendency, heat transfer, and pumping losses. In addition, EGR also reduces the engine-out emission of nitrogen oxides, particulates, and carbon monoxide while further improving efficiency at stoichiometric air/fuel ratios. However, improvements in efficiency through enhanced combustion phasing at high compression ratios can result in a significant increase in cylinder pressure. As cylinder pressure and temperature are both important parameters for estimating the durability requirements of the engine - in effect specifying the material and engineering required for the head and block - the impact of EGR on surface temperatures, when combined with the cylinder pressure data, will provide an important understanding of the design requirements for future cylinder heads.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Journal Article

Extension of Analytical Methods for Detailed Characterization of Advanced Combustion Engine Emissions

2016-10-17
2016-01-2330
Advanced combustion strategies used to improve efficiency, emissions, and performance in internal combustion engines (IC) alter the chemical composition of engine-out emissions. The characterization of exhaust chemistry from advanced IC engines requires an analytical system capable of measuring a wide range of compounds. For many years, the widely accepted Coordinating Research Council (CRC) Auto/Oil procedure[1,2] has been used to quantify hydrocarbon compounds between C1 and C12 from dilute engine exhaust in Tedlar polyvinyl fluoride (PVF) bags. Hydrocarbons greater than C12+ present the greatest challenge for identification in diesel exhaust. Above C12, PVF bags risk losing the higher molecular weight compounds due to adsorption to the walls of the bag or by condensation of the heavier compounds. This paper describes two specialized exhaust gas sampling and analytical systems capable of analyzing the mid-range (C10 - C24) and the high range (C24+) hydrocarbon in exhaust.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - Thermal Management Strategies

2017-03-28
2017-01-0954
The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
Journal Article

The Effects of Piston Crevices and Injection Strategy on Low-Speed Pre-Ignition in Boosted SI Engines

2012-04-16
2012-01-1148
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines, Low-Speed Pre-Ignition (LSPI), a pre-ignition event typically followed by heavy knock, has developed into a topic of major interest due to its potential for engine damage. Previous experiments associated increases in hydrocarbon emissions with the blowdown event of an LSPI cycle [1]. Also, the same experiments showed that there was a dependency of the LSPI activity on fuel and/or lubricant compositions [1]. Based on these findings it was hypothesized that accumulated hydrocarbons play a role in LSPI and are consumed during LSPI events. A potential source for accumulated HC is the top land piston crevice.
Technical Paper

Heat Transfer Enhancement through Advanced Casting Technologies

2020-04-14
2020-01-1162
There is growing interest in additive manufacturing technologies for prototype if not serial production of complex internal combustion engine components such as cylinder heads and pistons. In support of this general interest the authors undertook an experimental bench test to evaluate opportunities for cooling jacket improvement through geometries made achievable with additive manufacturing. A bench test rig was constructed using electrical heating elements and careful measurement to quantify the impact of various designs in terms of heat flux rate and convective heat transfer coefficients. Five designs were compared to a baseline - a castable rectangular passage. With each design the heat transfer coefficients and heat flux rates were measured at varying heat inputs, flow rates and pressure drops. Four of the five alternative geometries outperformed the baseline case by significant margins.
Technical Paper

Improving Brake Thermal Efficiency Using High-Efficiency Turbo and EGR Pump While Meeting 2027 Emissions

2021-09-21
2021-01-1154
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system.
Technical Paper

Modeling NOx Emissions from Lean-Burn Natural Gas Engines

1998-05-04
981389
A zero-dimensional cycle simulation model coupled with a chemical equilibrium model and a two-zone combustion model has been extended to predict nitric oxide formation and emissions from spark-ignited, lean-burn natural gas engines. It is demonstrated that using the extended Zeldovich mechanism alone, the NOx emissions from an 8.1-liter, 6-cylinder, natural gas engine were significantly under predicted. However, by combining the predicted NOx formation from both the extended Zeldovich thermal NO and the Fenimore prompt NO mechanisms, the NOx emissions were predicted with fair accuracy over a range of engine powers and lean-burn equivalence ratios. The effect of injection timing on NOx emissions was under predicted. Humidity effects on NOx formation were slightly under predicted in another engine, a 6.8-liter, 6-cylinder, natural gas engine. Engine power was well predicted in both engines, which is a prerequisite to accurate NOx predictions.
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

1998-10-19
982634
The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
Technical Paper

Operability and Compatibility Characteristics of Advanced Technology Diesel Fuels: Pump Evaluations

2002-05-06
2002-01-1675
Two different laboratory fuel-injection-pump durability-tests were conducted with four advanced technology test fuels. The first test used a relatively low pressure rotary, opposed piston fuel injection pump similar to those used on some current North American engines. The second test used a relatively high pressure common rail injection pump such as those used currently on some European engines. The tests were scheduled to operate for 500 hours under severe load conditions. It can be concluded that the common-rail, high-pressure fuel pump is more sensitive to the advanced fuels than is the rotary pump in this severe duty-cycle test. Although the laboratory high frequency reciprocating rig (HFRR) tests were able to distinguish between those fuels that contained lubricity additives and those that did not, there was little correlation with pump durability results.
Technical Paper

Particle Size Distribution and Mass Emissions from a Mining Diesel Engine Equipped with a Dry System Technologies Emission Control System

2003-05-19
2003-01-1893
Particle size distribution, number, and mass emissions from the exhaust of a 92 kW 1999 Isuzu 6BG1 nonroad naturally aspirated diesel engine were measured. The engine exhaust was equipped with a Dry System Technologies® (DST) auxiliary emission control device that included an oxidation catalyst, a heat exchanger, and a disposable paper particulate filter. Particle measurement was taken during the ISO 8178 8-mode test for engine out and engine with the DST using a scanning mobility particle sizer (SMPS) in parallel to the standard filter method (SFM), specified in 40 CFR, Part 89. The DST efficiency of removing particles was about 99.9 percent based on particle number, 99.99 percent based on particle mass derived from number and size. However, the efficiency based on mass derived from the SFM was much lower on the order of 90 to 93 percent.
Technical Paper

Engine Friction Modeling

1992-02-01
920482
This paper describes the results of using the Southwest Research Institute (SwRI) engine friction model to examine the effects of changing certain design parameters on the friction of a gasoline engine. The paper gives the results of an examination of the effects of changing the main and cam-shaft bearing aspect ratio on the friction of those bearings, and the effect of the tension of the piston rings, and the gas loading on them. The model predicts that the friction of the piston rings is the highest single component in the friction, except at high engine speeds, where the predicted windage was greater. Next, after the piston rings, was the piston skirt friction. The remaining components were relatively small, and in order of importance were the accessories, the cam bearing friction, cam/tappet friction, the main bearing, the crank pin, and oscillatory friction in the valve train, in that order.
Technical Paper

Application of On-Highway Emissions Technology on a Scraper Engine

1992-04-01
920923
An investigation was performed to determine the effects of applying on-highway heavy-duty diesel engine emissions reduction technology to an off-highway version of the engine. Special attention was paid to the typical constraints of fuel consumption, heat rejection, packaging and cost-effectiveness. The primary focus of the effort was NOx, reduction while hopefully not worsening other gaseous and particulate emissions. Hardware changes were limited to “bolt-on” items, thus excluding piston and combustion chamber modifications. In the final configuration, NOx was improved by 28 percent, particulates by 58 percent, CO and HC were also better and the fuel economy penalty was limited to under 4 percent. Observations are made about the effectiveness of various individual and combined strategies, and potential problems are identified.
Technical Paper

Development of a Piston Temperature Telemetry System

1992-02-01
920232
The measurement of piston temperature in a reciprocating engine has historically been a very time-consuming and expensive process. Several conditions exist in an engine that measurement equipment must be protected against. Acceleration forces near 2000 G's occur at TDC in automotive engines at rated speed. Operating temperatures inside the crankcase can range to near 150°C. To allow complete mapping of piston temperature, several measuring locations are required in the piston and data must be obtained at various engine operating conditions. Southwest Research Institute (SwRI) has developed a telemetry-based system that withstands the harsh environments mentioned above. The device is attached to the underside of a piston and temperature data is transmitted to a receiving antenna in the engine crankcase. The key element of this device is a tiny power generator which utilizes the reciprocating motion of the piston to generate electricity thus allowing the transmitter to be self-powered.
Technical Paper

Dilute Combustion Assessment in Large Bore, Low Speed Engines

2017-03-28
2017-01-0580
The promising D-EGR gasoline engine results achieved in the test cell, and then in a vehicle demonstration have led to exploration of further possible applications. A study has been conducted to explore the use of D-EGR gasoline engines as a lower cost replacement for medium duty diesel engines in trucks and construction equipment. However, medium duty diesel engines have larger displacement, and tend to require high torque at lower engine speeds than their automobile counterparts. Transmission and final drive gearing can be utilized to operate the engine at higher speeds, but this penalizes life-to-overhaul. It is therefore important to ensure that D-EGR combustion system performance can be maintained with a larger cylinder bore, and with high specific output at relatively low engine speeds.
Technical Paper

Methodology Development for Tumble Port Evaluation

2016-04-05
2016-01-0636
The objective of this work was to develop a methodology to rapidly assess comparative intake port designs for their capability to produce tumble flow in spark-ignition engine combustion chambers. Tumble characteristics are of relatively recent interest, and are generated by a combination of intake port geometry, valve lift schedule, and piston motion. While simple approaches to characterize tumble from steady-state cylinder head flow benches have often been used, the ability to correlate the results to operating engines is limited. The only available methods that take into account both piston motion and valve lift are detailed computational fluid dynamic (CFD) analysis, or optical measurements of flow velocity. These approaches are too resource intensive for rapid comparative assessment of multiple port designs. Based on the best features of current steady-flow testing, a simplified computational approach was identified to take into account the important effects of the moving piston.
Technical Paper

Observations from Cylinder Liner Wear Studies in Heavy Duty Diesel Engines and the Evolution towards Lower Viscosity Heavy Duty Engine Lubricants

2011-04-12
2011-01-1207
Since the invention of the internal combustion engine, the contact between piston ring and cylinder liner has been a major concern for engine builders. The quality and durability of this contact has been linked to the life of the engine, its maintenance, and its exhaust gas and blowby emissions, but also to its factional properties and therefore fuel economy. While the basic design has not changed, many factors that affect the performance of the ring/liner contact have evolved and are still evolving. This paper provides an overview of observations related to the lubrication of the ring/liner contact.
Technical Paper

Miller Cycle Application to the Scuderi Split Cycle Engine (by Downsizing the Compressor Cylinder)

2012-04-16
2012-01-0419
The Scuderi engine is a split cycle design that divides the four strokes of a conventional combustion cycle over two paired cylinders, one intake/compression cylinder and one power/exhaust cylinder, connected by a crossover port. This configuration provides potential benefits to the combustion process, as well as presenting some challenges. A Miller cycle configuration of the engine is made possible by turbocharging with a downsized compressor cylinder and has been modeled in 1-dimensional cycle simulation software.
Technical Paper

A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications

2013-04-08
2013-01-1628
SwRI has developed the DCO® ignition system, a unique continuous discharge system that allows for variable duration/energy events in SI engines. The system uses two coils connected by a diode and a multi-striking controller to generate a continuous current flow through the spark plug of variable duration. A previous publication demonstrated the ability of the DCO system to improve EGR tolerance using low energy coils. In this publication, the work is extended to high current (≻ 300 mA/high energy (≻ 200 mJ) coils and compared to several advanced ignition systems. The results from a 4-cylinder, MPI application demonstrate that the higher current/higher energy coils offer an improvement over the lower energy coils. The engine was tested at a variety of speed and load conditions operating at stoichiometric air-fuel ratios with gasoline and EGR dilution.
Technical Paper

Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

2005-05-11
2005-01-2200
Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were a 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NOx+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NOx emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NOx increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines.
X