Refine Your Search

Topic

Author

Search Results

Journal Article

Potential and Challenges for a Water-Gas-Shift Catalyst as a Combustion Promoter on a D-EGR® Engine

2015-04-14
2015-01-0784
In light of the increasingly stringent efficiency and emissions requirements, several new engine technologies are currently under investigation. One of these new concepts is the Dedicated EGR (D-EGR®) engine. The concept utilizes fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency. While the positive impact of reformate, in particular hydrogen, on gasoline engine performance has been widely documented, the on-board reforming process and / or storage of H2 remains challenging. The Water-Gas-Shift (WGS) reaction is well known and has been used successfully for many years in the industry to produce hydrogen from the reactants water vapor and carbon monoxide. For this study, prototype WGS catalysts were installed in the exhaust tract of the dedicated cylinder of a turbocharged 2.0 L in-line four cylinder MPI engine. The potential of increased H2 production in a D-EGR engine was evaluated through the use of these catalysts.
Technical Paper

Combination of Mixed Metal Oxides with Cu-Zeolite for Enhanced Soot Oxidation on an SCRoF

2021-09-05
2021-24-0071
A push for more stringent emissions regulations has resulted in larger, increasingly complex aftertreatment solutions. In particular, oxides of nitrogen (NOX) and particulate matter (PM) have been controlled using two separate systems, selective catalytic reduction (SCR) and the catalyze diesel particulate filter (CDPF), or the functionality has been combined into a single device producing the SCR on filter (SCRoF). The SCRoF forgoes beneficial NO2 production present in the CDPF to avoid NH3 oxidation which occurs when using platinum group metals (PGM) for oxidation. In this study, mixed-metal oxides are shown to oxidize NO to NO2 without appreciable NH3 oxidation. This selectivity leads to enhanced performance when combined with a typical Cu-zeolite catalyst.
Technical Paper

Comparison of Partial and Total Dilution Systems for the Measurement of Polycyclic Aromatic Hydrocarbons and Hydrocarbon Speciation in Diesel Exhaust

2020-09-15
2020-01-2190
Two methods of sampling exhaust emissions are typically used for characterizing emissions from diesel engines: total dilution which uses a constant volume sampling (CVS) system and partial flow dilution which relies on proportionally diluting a small part from the main exhaust stream. The CVS dilutes the entire exhaust flow to a constant volumetric flowrate which allows for proportional sampling of the exhaust species during transient engine operation. For partial dilution sampling during transient engine operation, obtaining a proportional sample is more rigorous and dilution of the extracted sample must be continuously changed throughout the cycle in order for the extracted sample flowrate to be proportional to the continuously changing exhaust flow. Typically, regulated emissions measured using both methods for an engine platform have shown good correlation. The focus for this work was on the experimental investigation of the two methods for the measurement of unregulated species.
Technical Paper

Evaluation of Possible Methanol Fuel Additives for Reducing Engine Wear and/or Corrosion

1990-10-01
902153
The use of fuel additives is one possible approach to reduce wear and corrosion in methanol fueled automobile engines. One hundred and six compounds added to M100 fuel in modest concentrations (1%) were tested in a Ball on Cylinder Machine (BOCM) for their ability to improve lubricity. The most promising candidates were then tested in an engine using a modified ASTM Sequence V-D wear screening test. Additive performance was measured by comparing the buildup of wear metals in the oil to that obtained from an engine fueled with neat M100. The BOCM method of evaluating the additive candidates proved inadequate in predicting abrasive engine wear under the test conditions utilized for this research program.
Technical Paper

Fuel Economy Benefits of Electric and Hydraulic Off Engine Accessories

2007-04-16
2007-01-0268
This paper will describe the fuel economy benefits that can be obtained when traditionally engine-driven accessories such as water pumps, oil pumps, power steering pumps, radiator cooling fans and air conditioning compressors are decoupled from the engine and are remotely driven and controlled. Simulation results for different vehicle configurations such as heavy duty trucks operated over urban and highway driving cycles and light duty vehicles such as mini vans will be presented. These results will quantify the heavy dependence of fuel economy benefits associated with different types of driving cycles.
Technical Paper

Aging of Zeolite Based Automotive Hydrocarbon Traps

2007-04-16
2007-01-1058
This paper analyzes the aging of zeolite based hydrocarbon traps to guide development of diagnostic algorithms. Previous research has shown the water adsorption ability of zeolite ages along with the hydrocarbon adsorption ability, and this leads to a possible diagnostic algorithm: the water concentration in the exhaust can be measured and related to aging. In the present research, engine experiments demonstrate that temperature measurements are also related to aging. To examine the relationship between temperature-based and moisture-based diagnostic algorithms, a transient, nonlinear heat and mass transfer model of the exhaust during cold-start is developed. Despite some idealizations, the model replicates the qualitative behavior of the exhaust system. A series of parametric studies reveals the sensitivity of the system response to aging and various noise factors.
Technical Paper

Effect of Diesel and Water Co-injection with Real-Time Control on Diesel Engine Performance and Emissions

2008-04-14
2008-01-1190
A system for injection of diesel fuel and water with real-time control, or real-time water injection (RTWI), was developed and applied to a heavy-duty diesel engine. The RTWI system featured electronic unit pumps that delivered metered volumes of water to electronic unit injectors (EUI) modified to incorporate the water addition passages. The water and diesel mixed in the injector tip such that the initial portion of the injection contained mostly diesel fuel, while the balance of the injection was a water and diesel mixture. With this hardware, real-time cycle-by-cycle control of water mass was used to mitigate soot formation during diesel combustion. Using RTWI alone, NOx emissions were reduced by 42%. Using high-pressure-loop exhaust gas recirculation (EGR) and conventional diesel combustion with RTWI, the NOx was reduced by 82%.
Technical Paper

Effects of Water on Distillate Fuel Lubricity

1998-10-19
982568
The continuing trend toward “cleaner” distillate fuels has prompted concerns about the lubricity characteristics of current and future distillates. Since many U.S. Navy ships utilize seawater-compensated fuel tanks to maintain the ship's trim, the Navy performed a detailed study in order to better understand the relationship between fuel water content and lubricity characteristics. The lubricity test methods, modified for this study, were ASTM D 6078 (SLBOCLE), D 6079 (HFRR), and D 5001 (BOCLE). The results indicated that, with few exceptions, there was generally no evidence of a correlation between the water content of the fuels and the corresponding lubricity measurements as determined by the laboratory tests.
Technical Paper

Predicting Sequence VI, VIA, and VIB Engine Tests Using Laboratory Methods

2001-05-07
2001-01-1904
Engine tests are widely used to measure the ability of lubricating oils to reduce fuel consumption through improved mechanical efficiency. Previous publications have correlated laboratory-scale tests with the well-established Sequence VI and VIA engine methods. The present paper uses a matrix of 66 oils to produce an empirical model for the recently developed Sequence VIB engine test. A smaller matrix of oils was available for correlation with Sequence VI and VIA results. The models combine a purposely-designed friction test with conventional measures of kinematic and high-temperature high-shear viscosity. Good correlation was obtained with the Sequence VI, VIA and VIB results, as well as each of the five stages in the Sequence VIB test. The effects of lubricant oxidation in the 96-hour FEI-2 portion of the Sequence VIB test were similar for each of the oils. As a result, good correlation was observed between FEI-1 and FEI-2 results from the VIB test.
Technical Paper

CO2 Pump for the Space Station Advanced Atmosphere Revitalization Subsystem

2001-07-09
2001-01-2418
The current operation of the International Space Station (ISS) calls for the oxygen used by the occupants to be vented overboard in the form of CO2, after the CO2 is scrubbed from the cabin air. Likewise, H2 produced via electrolysis in the oxygen generator is also vented. NASA is investigating the use of the Sabatier process to combine these two product streams to form water and methane. The water is then used in the oxygen generator, thereby conserving this valuable resource. One of the technical challenges to developing the Sabatier reactor is transferring CO2 from the Carbon Dioxide Removal Assembly (CDRA) to the Sabatier reactor at the required rate, even though the CDRA and the Sabatier reactor operate on different schedules. One possible way to transfer and store CO2 is to use a mechanical compressor and a storage tank.
Technical Paper

A New Approach to Improving Fuel Economy and Performance Prediction through Coupled Thermal Systems Simulation

2002-03-04
2002-01-1208
Vehicle designers make use of vehicle performance programs such as RAPTOR™ to predict the performance of concept vehicles over ranges of industry standard drive cycles. However, the accuracy of such predictions may be greatly influenced by factors requiring more specialist simulation capabilities. For example, fuel economy prediction will be heavily influenced by the performance of the engine cooling system and its impact on the vehicle's aerodynamic drag, and the load from the air-conditioning system. To improve the predictions, specialist simulation capabilities need to be applied to these aspects, and brought together with the vehicle performance calculations through co-simulation. This paper describes the approach used to enable this cosimulation and the benefits achieved by the vehicle designer.
Technical Paper

Paint Integrity and Corrosion Sensor

2002-03-04
2002-01-0205
Atmospheric corrosion of steels, aluminum alloys, and Al-clad aluminum alloys is a problem for many civil engineering structures, commercial and military vehicles, and aircraft. Paint is usually the primary means to prevent the corrosion of steel bridge components, automobiles, trucks, and aircraft. Under ideal conditions, the coating provides a continuous layer that is impervious to moisture. At present, maintenance cycles for commercial and military aircraft and ground vehicles, as well as engineered structures, is based on experience and appearance rather than a quantitative determination of coating integrity. To improve the maintenance process and reduce costs, sensors are often used to monitor corrosion. The present suite of sensors designed to detect corrosion and marketed to predict the lifetime of the engineered components, however, are not useful for determining the condition of the protective paint coatings.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

2002-10-21
2002-01-2892
Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
Technical Paper

Comparison of Hydrocarbon Measurement with FTIR and FID in a Dual Fuel Locomotive Engine

2016-04-05
2016-01-0978
Exhaust emissions of non-methane hydrocarbon (NMHC) and methane were measured from a Tier 3 dual-fuel demonstration locomotive running diesel-natural gas blend. Measurements were performed with the typical flame ionization detector (FID) method in accordance with EPA CFR Title 40 Part 1065 and with an alternative Fourier-Transform Infrared (FTIR) Spectroscopy method. Measurements were performed with and without oxidation catalyst exhaust aftertreatment. FTIR may have potential for improved accuracy over the FID when NMHC is dominated by light hydrocarbons. In the dual fuel tests, the FTIR measurement was 1-4% higher than the FID measurement of. NMHC results between the two methods differed considerably, in some cases reporting concentrations as much as four times those of the FID. However, in comparing these data it is important to note that the FTIR method has several advantages over the FID method, so the differences do not necessarily represent error in the FTIR.
Technical Paper

The New BAIC High Efficiency Turbocharged Engine with LPL-EGR

2017-10-08
2017-01-2414
The new Beijing Automotive Industry Corporation (BAIC) engine, an evolution of the 2.3L 4-cylinder turbocharged gasoline engine from Saab, was designed, built, and tested with close collaboration between BAIC Motor Powertrain Co., Ltd. and Southwest Research Institute (SwRI®). The upgraded engine was intended to achieve low fuel consumption and a good balance of high performance and compliance with Euro 6 emissions regulations. Low fuel consumption was achieved primarily through utilizing cooled low pressure loop exhaust gas recirculation (LPL-EGR) and dual independent cam phasers. Cooled LPL-EGR helped suppress engine knock and consequently allowed for increased compression ratio and improved thermal efficiency of the new engine. Dual independent cam phasers reduced engine pumping losses and helped increase low-speed torque. Additionally, the intake and exhaust systems were improved along with optimization of the combustion chamber design.
Technical Paper

Factors Affecting Heat Transfer in a Diesel Engine: Low Heat Rejection Engine Revisited

2013-04-08
2013-01-0875
A large amount of the heat generated during the engine combustion process is lost to the coolant system through the surrounding metal parts. Therefore, there is a potential to improve the overall cycle efficiency by reducing the amount of heat transfer from the engine. In this paper, a Computational Fluid Dynamics (CFD) tool has been used to evaluate the effects of a number of design and operating variables on total heat loss from an engine to the coolant system. These parameters include injection characteristics and orientation, shape of the piston bowl, percentage of EGR and material property of the combustion chamber. Comprehensive analyses have been presented to show the efficient use of the heat retained in the combustion chamber and its contribution to improve thermal efficiency of the engine. Finally, changes in design and operating parameters have been suggested based on the analytical results to improve heat loss reduction from an engine.
Technical Paper

Numerical and Experimental Characterization of the Dual-Fuel Combustion Process in an Optically Accessible Engine

2013-04-08
2013-01-1670
The dual-fuel combustion process of ethanol and n-heptane was characterized experimentally in an optically accessible engine and numerically through a chemical kinetic 3D-CFD investigation. Previously reported formaldehyde PLIF distributions were used as a tracer of low-temperature oxidation of straight-chained hydrocarbons and the numerical results were observed to be in agreement with the experimental data. The numerical and experimental evidence suggests that a change in the speed of flame propagation is responsible for the observed behavior of the dual-fuel combustion, where the energy release duration is increased and the maximum rate of pressure rise is decreased. Further, an explanation is provided for the asymmetrical energy release profile reported in literature which has been previously attributed to an increase in the diffusion-controlled combustion phase.
Technical Paper

Accessory Electrification in Class 8 Tractors

2006-04-03
2006-01-0215
Fuel costs to operate large trucks have risen substantially in the last few years and, based on petroleum supply/demand curves, that trend is expected to continue for the foreseeable future. Non-propulsion or parasitic loads in a large truck account for a significant percentage of overall engine load, leading to reductions in overall vehicle fuel economy. Electrification of parasitic loads offers a way of minimizing non-propulsion engine loads, using the full motive force of the engine for propulsion and maximizing vehicle fuel economy. This paper covers the integration and testing of electrified accessories, powered by a fuel cell auxiliary power unit (APU) in a Class 8 tractor. It is a continuation of the efforts initially published in SAE paper 2005-01-0016.
Technical Paper

Optimization of Heavy Duty Diesel Engine Lubricant and Coolant Pumps for Parasitic Loss Reduction

2018-04-03
2018-01-0980
As fuel economy becomes increasingly important in all markets, complete engine system optimization is required to meet future standards. In many applications, it is difficult to realize the optimum coolant or lubricant pump without first evaluating different sets of engine hardware and iterating on the flow and pressure requirements. For this study, a Heavy Duty Diesel (HDD) engine was run in a dynamometer test cell with full variability of the production coolant and lubricant pumps. Two test stands were developed to allow the engine coolant and lubricant pumps to be fully mapped during engine operation. The pumps were removed from the engine and powered by electric motors with inline torque meters. Each fluid circuit was instrumented with volume flow meters and pressure measurements at multiple locations. After development of the pump stands, research efforts were focused on hardware changes to reduce coolant and lubricant flow requirements of the HDD engine.
Technical Paper

Development of a Lean-NOx Catalyst Containing Metal-Ligand Complex Impregnated Molecular Sieves

1996-10-01
962050
This paper describes the development and evaluation of an operative catalyst for the reduction of NOx in lean exhaust. A catalyst that incorporates iron (II)-complex impregnated modified mesoporous molecular sieves (MCM-41) has been synthesized and further treated with [pd(NH3)4]Cl2 [1]. Experimental results suggest a hydrocarbon-independent reduction of NOx takes place on the iron center, and oxidation of CO is assisted by the palladium ion. The catalytic activity toward HC CO, and NOx removal was studied with simulated and real engine exhaust in the laboratory and on an engine, respectively. Engine test results demonstrate a reduction of NOx of up to 10 percent at catalyst inlet temperatures in the range of 260°C to 280°C. In this paper, possible NOx reduction pathways are also discussed.
X