Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Vehicle Aerodynamics Simulation for the Next Generation on the K Computer: Part 1 Development of the Framework for Fully Unstructured Grids Using up to 10 Billion Numerical Elements

2014-04-01
2014-01-0621
A simulation framework for vehicle aerodynamics using up to 10 billion fully unstructured cells has been developed on a world-fastest class supercomputer, called the K computer, in Kobe, Japan. The simulation software FrontFlow/red-Aero was fully optimized on the K computer to utilize up to 10,000 processors with tens of thousands of cores. A hybrid parallelization method using MPI among processors and OpenMP among cores inside each processor was adopted. The code was specially tuned for unsteady aerodynamic simulation including large-eddy simulation, and low Mach number approximation was adopted to avoid excessive iterations usually required for the fully incompressible algorithm. The automated mesh refining system was developed to generate unstructured meshes of up to 10 billion cells. In the system, users only generate unstructured meshes in the order of tens of millions of cells directly using commercial preprocessing software.
Technical Paper

Evaluation of an Open-grill Vehicle Aerodynamics Simulation Method Considering Dirty CAD Geometries

2018-04-03
2018-01-0733
In open-grille vehicle aerodynamics simulation using computational fluid dynamics, in addition to basic flow characteristics, such as turbulent flow with a Reynolds number of several million on the bluff body, it is important to accurately estimate the cooling air flow introduced from the front opening. It is therefore necessary to reproduce the detailed geometry of the entire vehicle including the engine bay as precisely as possible. However, there is a problem of generating a good-quality calculation grid with a small workload. It usually takes several days to a week for the pretreatment process to make the geometry data ‘clean’ or ‘watertight’. The authors proposed a computational method for complex geometries with a hierarchical Cartesian grid and a topology-independent immersed boundary method with dummy cells that discretize the geometry on a cell-by-cell basis and can set an imaginary point arbitrarily.
Technical Paper

Measurement of Fuel Liquid Film under the Different Injection Pressure

2013-10-15
2013-32-9167
The purpose of this study was to measure the distribution and volume of liquid film adhering to the walls after the injection of fuel by an injector of a port-injection engine using the laser induced fluorescence (LIF) method while changing the fuel pressure and the angle of injection, and to consider how adhesion can be reduced in order to decrease the exhaust emission of gasoline engine. Using a high-speed camera, we filmed the adhesion and evaporation of liquid film in time series. Perylene, used here as a fluorescence dye, was blended with a fuel comprising toluene and n-heptane, and the mixture was injected onto a solid surface using a port-injection injector. UVLED with a maximum output wavelength of 375 nm was used as the exciting light. To more accurately measure the volume of fuel adhesion, it was necessary to correct the unevenness of the light source.
Technical Paper

INTRODUCTION OF COMPUTER SIMULATION TECHNOLOGY FOR ELECTRODEPOSITION PAINTING PROCESS

2011-11-08
2011-32-0639
The electrodeposition painting can make a coat adhere not only to the exterior surface but also on the inside of an object, and has excellent corrosion resistance. Therefore, it is widely used as paint for anti-corrosion to various vehicles. In electrodeposition painting, by the electricity from an electrode flowing into the surface of an object through paint solution, a paint deposits to the surface of an object and a paint film is formed. Therefore, if the object is simply in contact with paint solution, a paint film will not necessarily be formed. For example, even if paint solution has touched, since the electrical resistance of paint solution is not high, sufficient current flows through the outside of a motorcycle frame, nor the inner surface of the automobile body and a paint film may not be formed. In order to check the paint film thickness of electrodeposition painting conventionally, it was measuring by disassembling the actually painted object.
Technical Paper

Prediction Method of Speed Characteristics of V-Belt CVT

2011-11-08
2011-32-0643
The Mechanical CVT is mainly used for small size motorcycle called “scooter”, which has a 250 cc or less engine capacity. The speed characteristics of the Mechanical CVT are decided by engine speed and load-torque on driven pulley. In few papers, these characteristics are studied under full-load or no-load condition [1]-[2]. However, the characteristics at part-load condition are not well known. To develop a motorcycle with low fuel consumption, it is important that the characteristics at part-load condition are considered in driving cycle. Driving cycle simulation is needed to estimate CVT ratio at design stage. This research proposes equations representing the speed characteristics of the Mechanical CVT at part-load condition. Driving cycle simulation is also developed for estimation of the fuel consumption at optional driving cycles and the dynamic behavior of the CVT system. It could be a CVT design tool to makes sure whether its performance is achieved for design targets.
Technical Paper

Anodizing method for aluminum alloy by using high-frequency switching electrolysis

2011-11-08
2011-32-0645
Anodizing is applied to improve the durability and the corrosion resistance of aluminum alloy parts of engines and car bodies. Generally, anodic oxide film is formed using direct current anodizing (DCA). However, in the case of anodizing high silicon aluminum alloy cast parts, it is difficult to derive uniform film thickness distribution. Furthermore, it takes a long treatment time which causes low productivity. In this study, the authors have developed an anodizing method by using high-frequency switching anodizing (HSA) to solve these problems. The growth process of anodic oxide film is susceptible to the metallographic structure. Thus, the typical DCA application to the high silicon aluminum alloy produces a non-uniform film thickness, while HSA has the potential to form uniform film without being affected by metallographic structure. Moreover, the current density of HSA is higher than that of DCA which reduces treatment time to 1/5 as the film formation enhances.
Technical Paper

Development of lead-free crankshaft for motorcycle

2011-11-08
2011-32-0649
Lead-added free-cutting steel has been used by many parts which need high machinability because lead improves chip friability and drill life. However, the demand of lead reduction increases in recent years, because of environmental impact substance reduction. Therefore, we developed lead-free crankshaft for motorcycle. Until now, crankshaft for motorcycle has been manufactured with lead-added free-cutting steel by a following process; Hot-Forging - Quenching and Tempering (QT) - Prior Machining - Nitrocarburizing - Finishing process because of strength and machinability. When we tried to change steel to lead-free, we examined to change to sulfur-added free-cutting steel. However, chip friability of sulfur-added free-cutting steel is inferior to lead one. Thus, we concerned about increase in machining expense. Then, heat-treatment after forging was examined to change from QT to normalizing for reducing the heat-treatment expense.
Technical Paper

Sensory Evaluation for Motorcycle Gear Shift Feeling with Simulator

2011-11-08
2011-32-0623
Gear shift feeling is often an important factor which appeals to motorcycle riders. Therefore, it is important for designers to create a pleasant gear shift feeling when developing a motorcycle. Sensory evaluation tests are indispensable for quantifying the gear shift feeling, but are very difficult to conduct with an actual motorcycle. Therefore, we developed a simulator dedicated to sensory evaluation tests, used it to conduct sensory evaluation tests, and thus clarified the relationship between the physical amount of gear shift properties and gear shift feeling. This paper describes the development of the simulator, the sensory evaluation tests conducted on gear shift feeling using the simulator, and the results of analysis.
X