Refine Your Search

Topic

Author

Search Results

Technical Paper

Challenges and Approaches of Electric Vehicles Powertrain Mount System Optimization for NVH, Buzz Squeak Rattle and Durability

2021-08-31
2021-01-1085
In electric vehicles, the powertrain mounting system design has challenges different from conventional internal combustion engine (ICE) powertrains. Due to the absence of source noise, the customer predominantly experiences the buzz, squeak and rattle (BSR) noise. The 6 degrees of freedom (DOF) modal frequency target is less stringent than a three-cylinder or four-cylinder ICE powertrain. The durability loads in EV also differ due to less powertrain weight. In this paper, a study has been carried out about balancing all three main performance parameters of modal decoupling, BSR and durability through powertrain mount design optimization. The article shows that a carryover ICE powertrain mount has typical issues in Electric Vehicle (EV). A case study has discussed in detail how to manage those issues. Finally, it is concluded that a particular focus is required during an early stage of mount design to address these challenges for an EV.
Technical Paper

Influence of Powertrain Mount Stiffness Progressivity on Buzz, Squeak & Rattle Noise for Electric Vehicle

2021-08-31
2021-01-1089
For a modified electric vehicle on the same internal combustion engine (ICE) platform, the primary consideration is to have no change in long member and pendulum type conventional engine mounting system to save development cost and timeline. Electric vehicle (EV) powertrain is comparatively lighter w.r.t the ICE. As a result, the engine mount’s static preload setting point or powertrain centre of gravity under static powertrain load gets changed resulting in a change in stiffness for the same engine mount. As the static stiffness changes, the dynamic stiffness and modal frequency also change. The 6 degrees of freedom (DOF) modal frequency has almost no impact on powertrain modes as EV powertrain modes, mainly, the motor frequency, is much higher than engine mount Eigen modes. In this scenario, the gap management gets disturbed due to less static preload, and non-linearity gets affected.
Technical Paper

Machine Learning based Operation Strategy for EV Vacuum Pump

2021-09-22
2021-26-0139
In an automotive braking system, Vacuum pump is used to generate vacuum in the vacuum servo or brake booster in order to enhance the safety and comfort to the driver. The vacuum pump operation in the braking system varies from conventional to electric vehicles. The vacuum pump is connected to the alternator shaft or CAM shaft in a conventional vehicle, operates continuously at engine speed and supplies continuous vacuum to the brake servo irrespective of vacuum requirement. To sustain continuous operation, these vacuum pumps are generally oil cooled. Whereas in electric vehicles, the use of a motor-driven vacuum pump is very much needed for vacuum generation as there is no engine present. Thus, with the assistance of an electronic control unit (ECU), the vacuum pump can be operated only when needed saving a significant amount of energy contributing to fuel economy and range improvement and emission reduction.
Technical Paper

1D Modelling of Fuel Cell Losses Including the Water and Thermal Management

2021-09-22
2021-26-0225
Fuel cells plays significant role in the automotive sector to substitute the fossil fuels and complement to electric vehicles. In the fuel cell vehicles fuel cell stack is major component. It is important to have a robust fuel cell model that can simulate the behaviour of the fuel cell stack under various operating conditions in order to study the functioning of a fuel cell and optimize its operating parameters and achieve the best efficiency in operation. The operating voltage of the fuel cell at different current densities depends upon thermodynamic parameters like temperature and pressure of the reactants as well factors like the state of humidification of the electrolyte membrane. A 1D model is developed to capture the variation in voltage at different current densities due to internal losses and changes to operating conditions like temperature and pressure.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

A Continuum Design Sensitivity Analysis of Vehicle Aggregates for Refined NVH Performance

2021-09-22
2021-26-0294
Transmission of vibration and noise to the occupants and especially driver contributes significantly to the quality perception of the motor vehicle and eventually, it affects the overall ride comfort. These forces mainly reach to customer through tactile locations, i.e. floor, gearshift lever, steering wheel and seat. Showroom/Parking customer drive pattern of a vehicle evinces the steering system and driver’s seat rail vibration as strikingly linked aspect to evaluate human comfort [1]. This paper deals with the study of vibration at steering wheel and seat affecting human comfort at engine idle rpm with AC ON and OFF condition for passenger vehicles. The transmissibility of engine and radiator induced vibrations has been investigated with respect to modal alignment of steering and seat system.
Technical Paper

Digital Road Load Data Acquisition Methodology for Automotive Durability Analysis

2021-09-22
2021-26-0344
Durability is an important indicator to measure the automobile quality and reliability. Automotive industry is striving to develop products having excellent performance to weight ratios and along with high safety standards. A successful product should have adequate robustness during normal customer operation and the ability to withstand high impact events without impairment of function or safety relevant damage. Road Load Data Acquisition (RLDA) along with efficient design and validation processes are, among others, critical factors for success in the automotive industry. Physical RLDA is expensive and time consuming, the prototype vehicles being costly and only available at a later stage in the vehicle development cycle. Component failures occurring on the proto test vehicles can prove to be a major setback, delaying the product launch by months. In order to overcome above challenge, this paper presents an innovative methodology to carry out Digital RLDA (dRLDA).
Technical Paper

Approach to Model AC Compressor Cycling in 1D CAE with Enhanced Accuracy of Cabin Cooldown Performance Prediction

2021-09-22
2021-26-0430
In previous work, AC Compressor Cycling (ACC) was modeled by incorporating evaporator thermal inertia in Mobile Air Conditioning (MAC) performance simulation. Prediction accuracy of >95% in average cabin air temperature has been achieved at moderate ambient condition, however the number of ACC events in 1D CAE simulation were higher as compared to physical test [1]. This paper documents the systematic approach followed to address the challenges in simulation model in order to bridge the gap between physical and digital. In physical phenomenon, during cabin cooldown, after meeting the set/ target cooling of a cabin, the ACC takes place. During ACC, gradual heat transfer takes place between cold evaporator surface and air flowing over it because of evaporator thermal inertia.
Technical Paper

A Multiphysics Approach for NVH Analysis of PMSM Traction Motor

2021-09-22
2021-26-0520
Electric vehicles are fast expanding in market size, and there are increasing customer expectations on all aspects of the vehicle, including its noise and vibrational characteristics. Irritable noise from traction motors account for around 15% of the overall noise in an electric vehicle, and thus, has a need to be analysed and studied. This study focuses on identifying the critical vibro - acoustic orders for an 8 pole PMSM (Permanent Magnet Synchronous Motor) for three cases - healthy, with static eccentricity and with dynamic eccentricity. PMSM motors are widely used for traction and other applications due to their higher power density along with compact size. A coupled approach between electromagnetic and vibro - acoustic simulation is deployed to characterise the NVH behaviour of the motor.
Journal Article

Sensor less Wash Fluid Detection in Automotive Application

2013-04-08
2013-01-1338
The proposed paper describes the hardware and software method used for detection of wash fluid level in water tank used in automotive; thereby eliminating the need for sensor (Reed type switch mounted on washer bottle) for low wash fluid detection. Wash motor is used for water spray on windscreen during wash and wipe operation. The proposed system makes use of hardware circuit used to drive the wash motor usually of DC (Direct current) type and a feedback circuitry to read back the current consumed by motor during particular wash operation. This hardware system is coupled with software algorithm such that during IGNITION ON instance wash motor will be turned on such as to get motor current readings to determine amount of load operated by motor which is related to wash fluid inside the washer bottle. Motor operation is optimized so as to avoid water spray causing nuisance to user.
Technical Paper

Simulink Model for SoC Estimation using Extended Kalman Filter

2021-09-22
2021-26-0382
State of Charge (SoC) estimation of battery plays a key role in strategizing the power distribution across the vehicle in Battery Management System. In this paper, a model for SoC estimation using Extended Kalman Filter (EKF) is developed in Simulink. This model uses a 2nd order Resistance-Capacitance (2RC) Equivalent Circuit Model (ECM) of Lithium Ferrous Phosphate (LFP) cell to simulate the cell behaviour. This cell model was developed using the Simscape library in Simulink. The parameter identification experiments were performed on a new and a used LFP cell respectively, to identify two sets of parameters of ECM. The cell model parameters were identified for the range of 0% to 100% SoC at a constant temperature and it was observed that they vary as a function of SoC. Hence, variable resistance and capacitance blocks are used in the cell model so that the cell parameters can vary as a function of SoC.
Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Technical Paper

Methodology to Quantify the Undesirable Effects of the Localized Inefficiency of Heat Pick-Up in Suction Line on an Automotive Air Conditioning System

2020-08-18
2020-28-0036
The automotive application places very special demands on the air conditioning system. As is the case with any other process, system efficiency is very important and the automotive air-conditioning application is no exception. While the characteristics of all the major components in the air conditioning system like compressor, condenser, evaporator and blower contribute to overall system efficiency, localized inefficiencies do play a part and so must be kept to a minimum, especially in this day and age when extra emphasis is being laid on sustainability. One such phenomenon that contributes to the system inefficiency is heat pick-up in suction line. Since the temperature at the evaporator-outlet is quite lower than ambient and also its surroundings (steering system pipes and hoses, engine, air intake pipes and so on), the refrigerant picks up heat as it moves along the suction line up to the compressor inlet. This heat pick-up is detrimental to the overall system performance.
Technical Paper

Regulatory Norms and Effect on Transmission Component Validation

2021-09-22
2021-26-0460
With the advent of BS VI regulations, automotive manufacturers are required to innovate the powertrains, fuel systems, exhaust and its after treatment systems to meet the regulatory requirements. The exhaust regulations can be met either by reducing the exhaust gases being generated by the engine (attacking the source) or by treating the exhaust gases in after treatment devices. The choice of the opted system varies with the manufacturer. The after-treatment devices such as catalytic converters are generally mounted in the engine compartment to take advantage of high temperature of exhaust gases to yield the reactions. Such an arrangement imposes a lot of thermal load on the peripheral components such as gearshift cables, bearings, oil seals, driveshafts etc. Thermal shields or thermal sleeve are used to address thermal issue and to protect transmission components.
Technical Paper

Development of Mount for Electric Powertrains - A Multi Degree of Freedom Optimization Approach

2020-04-14
2020-01-0417
The recent vehicle development demands for electric powertrain as against conventional fuels engines. The electric powertrain offers advantages in terms of cleaner and quieter operations. In electric vehicle, the conventional engine is replaced by electric motor operated on batteries. Here, the conventional engine refers to those powered by diesel, petrol, CNG and some hybrid vehicles using fuel as primary source for power generation. Thus, the system design approach for mount also changes. At present, various approaches are being followed to mount electric powertrain like conventional pendulum type, with or without cradle, Common or different motor and electric box mountings etc. The electric powertrain differs from conventional powertrain in terms of weights, mass moment of inertia, torque, NVH requirements like Key in Key off, idling, low frequency vibrations etc. Thus conventional mount will not necessarily meet NVH requirements for Electric powertrains.
Technical Paper

Development of IT Enabled System for Data Management to Meet EU Vehicle Recyclability Directives

2010-04-12
2010-01-0276
EU directive 2005/64/EC on type approval of motor vehicles with respect to their Reusability, Recyclability and Recoverability ( RRR ) requires vehicle manufacturers to put in place the necessary arrangements and procedures for Parts, Materials and Weight (PMW ) data collection from full chain of supply. This is required to perform the calculations of recyclability rate and recoverability rate in line with ISO 22628. Commonly practiced data collection methodologies included spreadsheet and use of internationally available IT support system for collection of material data. Data complexity and prohibitive cost for using Internationally available IT Support systems like IMDS (International Material Data System) has led to the in-house development of IT enabled Solution customizing Siemens PLM software product (Team centre Enterprise) and SAP (SRM suite).
Technical Paper

Optimization of Brake Pedal Feel and Performance for Dual Air Over Hydraulic System on Light Commercial Vehicles

2010-10-05
2010-01-1888
In current scenario, Light Commercial Vehicle segment (7 ton - 9.6 ton) is gradually experiencing a shift in the focus from being just a goods carrier to a vehicle which is developed to take care of driver's safety and comfort in terms of better ergonomics and aesthetics. As compared to their conventional counterparts the new generation Light Commercial Vehicles are better equipped and tuned to cater to the changing needs of the consumers. In view of this, refinement at the sub system level is becoming far more critical. On the same lines, the present work discusses a refined brake system for Light Commercial Vehicles where the conventional pneumatic system is replaced with Dual Air Over Hydraulic (DAOH) to achieve cost and weight advantages without compromising on its performance. However, during the development process, a lot of issues were observed with respect to the braking performance and the brake pedal feel.
Technical Paper

Evaluation of Interdependent Behavior of Dual Mass Flywheel (DMF) and Engine Starting System

2010-04-12
2010-01-0188
Interdependency of automotive transmission aggregates on electrical/ electronics systems is increasing day by day, offering more comfort and features. For a system integrator, it becomes very much important while selecting/designing any such component to take into consideration the relationship between such interdependent components from performance as well as endurance point of view. DMF failures due to inadequate starting system, is a major stumbling block in development of DMF for a particular vehicle application. The interface of DMF and starting system of a vehicle makes it essential to consider the effect of one on another. The study shows that the majority of DMF failures happen because of resonance phenomenon in the DMF during engine starting. The improper selection of starter motor makes the DMF more vulnerable for such failures.
Technical Paper

Method for Detecting the Head Lamp Switch Failure or Wiring Harness Failure and Controlling the Exterior and Interior Lights Using Intelligent Light Sensor

2011-04-12
2011-01-0117
This paper will present the method for activation of exterior and interior lighting system during the vehicle level fault conditions i.e. light switch failure, wiring harness faults, ignition switch failure etc. with intelligent light sensor. In vehicle the user safety is very important and exterior lighting system is playing a very important role during night driving condition. By considering the customer safety during any fault conditions i.e. light switch failure, wiring harness faults or any other faults condition the vehicle exterior and interior lighting system should not be switched off.
Technical Paper

Thermal Protection of Rear Mounted Engine and Its Components Using a Ventilation Fan with Unique Monitoring and Fault Diagnosis Technique

2017-03-28
2017-01-0620
The engine compartment of passenger car application contains various source which radiates the produced heat and raises the temperature level of the compartment. The rise in compartment temperature increases the body temperature of individual component. The rise in body temperature of critical components can endanger the durability or functionality of the specific component or a system in which it operates. The aim of this paper is to strategize thermal protection of the rear mounted engine and its components of a vehicle having radiator and cooling fan mounted in front. An additional ventilation fan with speed sensor is fitted alongside rear mounted engine and a unique monitoring technique framed in the EMS ECU to protect critical components like HT cables, alternators, ECUs, wiring harness etc. from thermal damage. The EMS continuously monitors the engine speed, vehicle speed and the PWM signal of ventilation fan to ensure the intended operation of the ventilation fan.
X