Refine Your Search

Topic

Search Results

Technical Paper

Assessment of Passenger Car for Surface Dirt Contamination in Wind Tunnel

2021-09-22
2021-26-0385
Self-soiling or surface contamination is usual phenomenon observed during rainy season wherein dirt on road are picked by rotating wheel and later released in air as fine particles. These released dirt particles are further carried by airflow around vehicle and as a result stick on vehicle exterior surfaces leading to surface contamination. Surface dirt contamination is one of critical issues that need consideration during early phase of vehicle development as vehicle styling plays a critical role for airflow around vehicle and therefore settling of dirt on vehicle exterior surfaces. Non consideration of such aspects in design can lead to safety issues with likely non-functioning of parking sensors, camera and visibility issues through ORVM, tailgate glass etc. Hence it is important to understand physical as well as digital techniques for assessment of vehicle for surface dirt contamination.
Technical Paper

Digital Road Load Data Acquisition Methodology for Automotive Durability Analysis

2021-09-22
2021-26-0344
Durability is an important indicator to measure the automobile quality and reliability. Automotive industry is striving to develop products having excellent performance to weight ratios and along with high safety standards. A successful product should have adequate robustness during normal customer operation and the ability to withstand high impact events without impairment of function or safety relevant damage. Road Load Data Acquisition (RLDA) along with efficient design and validation processes are, among others, critical factors for success in the automotive industry. Physical RLDA is expensive and time consuming, the prototype vehicles being costly and only available at a later stage in the vehicle development cycle. Component failures occurring on the proto test vehicles can prove to be a major setback, delaying the product launch by months. In order to overcome above challenge, this paper presents an innovative methodology to carry out Digital RLDA (dRLDA).
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

A Multiphysics Approach for NVH Analysis of PMSM Traction Motor

2021-09-22
2021-26-0520
Electric vehicles are fast expanding in market size, and there are increasing customer expectations on all aspects of the vehicle, including its noise and vibrational characteristics. Irritable noise from traction motors account for around 15% of the overall noise in an electric vehicle, and thus, has a need to be analysed and studied. This study focuses on identifying the critical vibro - acoustic orders for an 8 pole PMSM (Permanent Magnet Synchronous Motor) for three cases - healthy, with static eccentricity and with dynamic eccentricity. PMSM motors are widely used for traction and other applications due to their higher power density along with compact size. A coupled approach between electromagnetic and vibro - acoustic simulation is deployed to characterise the NVH behaviour of the motor.
Journal Article

Sensor less Wash Fluid Detection in Automotive Application

2013-04-08
2013-01-1338
The proposed paper describes the hardware and software method used for detection of wash fluid level in water tank used in automotive; thereby eliminating the need for sensor (Reed type switch mounted on washer bottle) for low wash fluid detection. Wash motor is used for water spray on windscreen during wash and wipe operation. The proposed system makes use of hardware circuit used to drive the wash motor usually of DC (Direct current) type and a feedback circuitry to read back the current consumed by motor during particular wash operation. This hardware system is coupled with software algorithm such that during IGNITION ON instance wash motor will be turned on such as to get motor current readings to determine amount of load operated by motor which is related to wash fluid inside the washer bottle. Motor operation is optimized so as to avoid water spray causing nuisance to user.
Technical Paper

Door Seal Behavior Prediction and Enhancement in Performance Using Digital Simulation

2021-09-22
2021-26-0387
Automotive door seal has an important function which is used extensively where interior of the vehicle is sealed from the environment. Problem with door seal system design will cause water leakage, wind noise, hard opening or closing of doors, gap and flushness issue which impair customer’s satisfaction of the vehicle. Moreover, improper design of seal can lead to difficulty in installation of door seal on body panel. The design prudence and manufacturing process are important aspect for the functionality and performance of sealing system. However, the door sealing system involves many design and manufacturing variables. At the early design stage, it is difficult to quantify the effect of each of the multiple design variables. As there are no physical prototypes during rubber profile beading-out stages, engineers need to carry out non-linear numerical simulations that involve complex phenomena as well as static and dynamic loads for door seal.
Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

2017-01-10
2017-26-0304
The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.
Technical Paper

Modeling and Optimization of Pneumatic Brake System for Commercial Vehicles by Model Based Design Approach

2017-09-17
2017-01-2493
Apart from being an active safety system the brake system represents an important aspect of the vehicle dynamics. The vehicle retardation and stopping distance completely depend upon the performance of brake system and the functionality of all components. However, the performance prediction of the entire system is a challenging task especially for a complex configuration such as multi-axial vehicle applications. Furthermore, due to its complexity most often the performance prediction by some methods is limited to static condition. Hence, it is very important to have equivalent mathematical models to predict all performance parameters for a given configuration in all different conditions This paper presents the adopted system modelling approach to model all the elements of the pneumatic brake system such as dual brake valve, relay valve, quick release valve, front and rear brake actuators, foundation brake etc.
Technical Paper

Vehicle Level Remote Range Improvement with Low Cost Approach

2012-04-16
2012-01-0789
Basic Function: Vehicle remote is used for vehicle lock/unlock/search/Hazard lights /approach light functions for customer convenience and vehicle security system. Conventional approach: 1 Use of separate RF (Radio Frequency) receiver -Additional Cost impact. 2 High remote RF power - Reduced remote battery life and bigger remote size required 3 High sensitivity RF receiver - High cost. Low Cost approach: It involves the followings: 1 Integration of RF receiver inside the Body Control Module (BCM). 2 Low Power Remote and Optimization of Remote PCB layout to get the maximum power. 3 External wired antenna taken out from BCM and proper routine need be ensured to get the best performance. 4 BCM mounting location to get the best remote range in all vehicle directions. This paper relates to the methodology for low cost approach for the RF communication between remote transmitter and receiver with achieving the best remote performance at vehicle level condition.
Technical Paper

A Comparative Study of Cradle and Sub Frame Type Powertrain Mounting System on Electric Vehicle

2021-08-31
2021-01-1022
The growing demand of fuel and cost saving on vehicle, today’s vehicle manufacturer are working on various weight reduction initiative in EV. Lighter weight vehicle have bigger challenges to meet NVH requirement. There are two types of EV called modified and adopted EV’s are commonly in use. The sub frame type of EV system comes under the category of modified EV. In this paper, a mounting system is studied and compared for a cradle type EV as well as sub frame or saddle type EV. MATLAB based optimization tools are used for parameter optimization. The focus is put on the optimization of mounting system location and stiffness for energy optimization, CoG and TRA-EA optimization. The best engine mounting system is compared and adopted based on simulation. 12 DOF studied to address high frequency resonance issues for a sub frame type EV. Finally robustness of the system is checked based on various simulation and optimization.
Technical Paper

Seat Structure Comfort Evaluation Using Pink Noise and Human/Dummy Transmissibility Correlation

2013-11-27
2013-01-2852
Vehicle floor vibration is the resultant of different road inputs damped through various transfer paths. Seat comfort, which depends on these floor vibrations, can be evaluated with a single input signal “Pink noise”; which constitutes various road inputs. Transmissibility of seat structure on a vibration shaker with pink noise input includes all possible responses of road inputs. Still, transmissibility profile at vehicle end and component level varies. This is due to the utilization of “dummy” on component level testing on vibration shaker, which acts as a dead weight with dissimilar damping characteristics of human. A transmissibility correlation between human and dummy is attained by replacing the dummy in place of human and actuating it to find the difference in contribution between them for different class of vehicles. This contribution extrapolation from the damping effects of human and dummy is applied on dummy transmissibility.
Technical Paper

An Analytical Approach to Derive Free Package Space Requirement for Pedestrian Head Form

2019-01-09
2019-26-0013
Pedestrians are a vulnerable road user group, comprising 22% of global road traffic deaths [1]. In Japan, pedestrian fatalities accounted for 28% of total road fatalities and approximately 16% in Australia. These figures compare with 13% for the USA and 40-50% for India and Thailand [2]. Various pedestrian safety requirements are mandated in different markets in recent years worldwide. For pedestrian head-form, vehicle front-end styling and the free package space below bonnet plays a vital role in deciding the pedestrian head-form safety performance. Currently during initial phase of vehicle development, the free package space requirement is decided based on benchmark data. However, the benchmarking data does not give any insight into the physics involved and is subjective in nature as it varies from vehicle to vehicle. This paper gives an analytical approach for defining the free package space requirements for meeting the targeted pedestrian head form performance requirements.
Technical Paper

Transient 1D Mathematical Model for Drum Brake System to Predict the Temperature Variation with Realistic Boundary Conditions

2017-01-10
2017-26-0299
Brake system is the most important system in the vehicle considering the overall vehicle safety and speed control. Brake applications are repetitive during a city traffic and hilly terrain on downhill gradient. Frequent braking gives rise to an overheating of the brake drum and its components. Braking operations at high temperature gives rise to problems like reduced deceleration due to loss of brake pad friction characteristics, pad softening and sticking to drum, pad distortion and wear etc. All these factors collectively result in deterioration of the braking performance and reduction of brake pad durability with time. Till date most of the thermal analysis performed for brake drum heating are through physical testing using brake system prototypes and by means of CFD tools. These methods are time consuming and expensive. There is a need for an alternative method to reduce physical trials and prototype building and reduce dependency on CFD analysis.
Technical Paper

Body Block FE Model Development and Correlation with Physical Tests

2017-01-10
2017-26-0293
Steering column and steering wheel are critical safety components in vehicle interior environment. Steering system needs to be designed to absorb occupant impact energy in the event of crash thereby reducing the risk of injury to the occupant. This is more critical for non-airbag vehicle versions. To evaluate the steering system performance, Body block impact test is defined in IS11939 standard [1]. Nowadays for product development, CAE is being extensively used to reduce development cycle time and minimize number of prototypes required for physical validation. In order to design the steering system to meet the Body Block performance requirements, a detailed FE model of Body Block impactor is required. The static stiffness and moment of inertia of body block are defined in SAE J244a [2]. The reference data available in SAE J244a is not sufficient to develop a Body Block model that would represent the physical impactor.
Technical Paper

Simulation of Heavy Commercial Vehicle Response to Rear Super Single Tire Blow Out

2017-01-10
2017-26-0341
The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
Technical Paper

CAE Based Head Form Impact Simulations for Development of Vehicle Interiors

2019-01-09
2019-26-0237
The interior components of a passenger vehicle are designed to provide comfort and safety to its occupants. In the event of accident, vehicle interiors are primary source of injuries when occupants interact with them. Vehicle interiors consists of Instrument panel (IP), center console, seats and controls in front of seating position etc. Severity of the injuries depends on the energy dissipating characteristics, profiles, projections of different interior components. These are assessed by ECE R21 and IS12553 head form impact tests. To evaluate the Head form impact performance on Interior components, Computer Aided Engineering (CAE) simulations are extensively used during the vehicle development. In order to predict failure of plastic components and snap joints which might lead to expose sharp edges, it is critical to model plastic material and snap joint.
Technical Paper

Crash Pulse Characterization for Restraints System Performance Optimization

2015-01-14
2015-26-0152
The vehicle crash signature (here on referred as crash pulse) significantly affects occupant restraints system performance in frontal crash events. Restraints system optimization is usually undertaken in later phase of product development. This leads to sub-optimal configurations and performance, as no opportunity exists to tune vehicle structure and occupant package layouts. In concept phase of development, crash pulse characterization helps to map occupant package environment with available structure crush space and stiffness. The crash pulse slope, peaks, average values at discrete time intervals, can be tuned considering library of restraints parameters. This would help to derive an optimal occupant kinematics and occupant-restraints interaction in crash event. A case study has been explained in this paper to highlight the methodology.
Technical Paper

Procedure for Material Failure Characterization through GISSMO

2019-01-09
2019-26-0284
Vehicle crashworthiness is an important aspect of vehicle development. Vehicle structural performance plays a critical role during crash for controlling the occupant injuries. During a crash event, vehicle energy management governs the structural performance and passenger compartment integrity. However, these parameters are dependent on material properties such as yield/ultimate tensile strength, work hardening effects, strain rate dependency, material elongations and material fracture strains. Appropriate representation of these material properties in CAE (Computer Aided Engineering) environment is very critical for reliable prediction of vehicle structural performance during development phase. Among all material properties, material fracture strain is the most complex one and needs detailed material characterization approach for failure definitions.
Technical Paper

ORVM Based Cabin Thermal Comfort - A Technological Approach

2023-09-14
2023-28-0042
Enriched ventilation and driver assistance systems which plays vital role in human thermal comfort and safety, are now necessities for the whole automotive sector. For faster cabin thermal comfort, air circulation around occupant’s body reveals higher cabin comfort index. In India natural and forced ventilation system is predominantly used in commercial vehicles as an economical solution for achieving interim cabin comfort over air conditioning system. Presently used forced ventilation system consist of electrically driven blower motor to remove stale air around human body which is adding alternator load and thus affects fuel economy. Remarkably, 22% of such auxiliary electrical load is taken by electrical components from engine generated power. In order to enhance cabin thermal comfort and conceivably reduce power usage, an effective air flow control system is need of hour.
Technical Paper

Prediction of Vehicle Headlamp Condensation Phenomenon Using Computational Fluid Dynamics

2021-09-22
2021-26-0325
The main task of the automotive headlights on cars is to illuminate the roadway and facilitate the driver fatigue-free and safe driving. An automotive headlamp is exposed to thermal variations during its operations and also exposed to the different environmental conditions. Automotive headlamp compartment is not completely sealed and vents are provided to exchange the air between environment and headlamp compartment for thermal cooling of the internal components. An automotive headlamp compartment is an environment with high thermal and low air flow exchanges with the ambient as results humidity can accumulated inside the headlamp compartment and there is a possibility of thin mist layer formation on the lens inner surface [1]. The combined use of numerical simulation and experimental studies is an important approach for headlamp design. This paper summarizes CFD simulation results for automotive headlamp condensation and de-condensation using ANSYS FLUENT.
X