Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Assessment of Passenger Car for Surface Dirt Contamination in Wind Tunnel

2021-09-22
2021-26-0385
Self-soiling or surface contamination is usual phenomenon observed during rainy season wherein dirt on road are picked by rotating wheel and later released in air as fine particles. These released dirt particles are further carried by airflow around vehicle and as a result stick on vehicle exterior surfaces leading to surface contamination. Surface dirt contamination is one of critical issues that need consideration during early phase of vehicle development as vehicle styling plays a critical role for airflow around vehicle and therefore settling of dirt on vehicle exterior surfaces. Non consideration of such aspects in design can lead to safety issues with likely non-functioning of parking sensors, camera and visibility issues through ORVM, tailgate glass etc. Hence it is important to understand physical as well as digital techniques for assessment of vehicle for surface dirt contamination.
Technical Paper

A Multiphysics Approach for NVH Analysis of PMSM Traction Motor

2021-09-22
2021-26-0520
Electric vehicles are fast expanding in market size, and there are increasing customer expectations on all aspects of the vehicle, including its noise and vibrational characteristics. Irritable noise from traction motors account for around 15% of the overall noise in an electric vehicle, and thus, has a need to be analysed and studied. This study focuses on identifying the critical vibro - acoustic orders for an 8 pole PMSM (Permanent Magnet Synchronous Motor) for three cases - healthy, with static eccentricity and with dynamic eccentricity. PMSM motors are widely used for traction and other applications due to their higher power density along with compact size. A coupled approach between electromagnetic and vibro - acoustic simulation is deployed to characterise the NVH behaviour of the motor.
Journal Article

Sensor less Wash Fluid Detection in Automotive Application

2013-04-08
2013-01-1338
The proposed paper describes the hardware and software method used for detection of wash fluid level in water tank used in automotive; thereby eliminating the need for sensor (Reed type switch mounted on washer bottle) for low wash fluid detection. Wash motor is used for water spray on windscreen during wash and wipe operation. The proposed system makes use of hardware circuit used to drive the wash motor usually of DC (Direct current) type and a feedback circuitry to read back the current consumed by motor during particular wash operation. This hardware system is coupled with software algorithm such that during IGNITION ON instance wash motor will be turned on such as to get motor current readings to determine amount of load operated by motor which is related to wash fluid inside the washer bottle. Motor operation is optimized so as to avoid water spray causing nuisance to user.
Technical Paper

Door Seal Behavior Prediction and Enhancement in Performance Using Digital Simulation

2021-09-22
2021-26-0387
Automotive door seal has an important function which is used extensively where interior of the vehicle is sealed from the environment. Problem with door seal system design will cause water leakage, wind noise, hard opening or closing of doors, gap and flushness issue which impair customer’s satisfaction of the vehicle. Moreover, improper design of seal can lead to difficulty in installation of door seal on body panel. The design prudence and manufacturing process are important aspect for the functionality and performance of sealing system. However, the door sealing system involves many design and manufacturing variables. At the early design stage, it is difficult to quantify the effect of each of the multiple design variables. As there are no physical prototypes during rubber profile beading-out stages, engineers need to carry out non-linear numerical simulations that involve complex phenomena as well as static and dynamic loads for door seal.
Technical Paper

Thermal Protection of Rear Mounted Engine and Its Components Using a Ventilation Fan with Unique Monitoring and Fault Diagnosis Technique

2017-03-28
2017-01-0620
The engine compartment of passenger car application contains various source which radiates the produced heat and raises the temperature level of the compartment. The rise in compartment temperature increases the body temperature of individual component. The rise in body temperature of critical components can endanger the durability or functionality of the specific component or a system in which it operates. The aim of this paper is to strategize thermal protection of the rear mounted engine and its components of a vehicle having radiator and cooling fan mounted in front. An additional ventilation fan with speed sensor is fitted alongside rear mounted engine and a unique monitoring technique framed in the EMS ECU to protect critical components like HT cables, alternators, ECUs, wiring harness etc. from thermal damage. The EMS continuously monitors the engine speed, vehicle speed and the PWM signal of ventilation fan to ensure the intended operation of the ventilation fan.
Technical Paper

A Method To Evaluate Passenger Thermal Comfort In Automobile Air Conditioning Systems

2017-01-10
2017-26-0150
In present day passenger cars, Mobile Air Conditioning (MAC) system is one of the essential features due to rise in overall ambient temperatures and comfort expectation of customers. During the development of MAC system, the focus is on cooling capacity of system for maintaining in-cabin temperatures. However, parameters like solar radiation, air velocities at occupant, relative humidity, metabolic rate and clothing of occupants also influence occupant’s thermal comfort and normally not considered in design of the MAC system. Subjective method is used to evaluate thermal comfort inside vehicle cabin which depends mainly on human psychology. To better understand the effect and minimize the human psychological factors a large sample of people are required. That process of evaluating the comfort inside the vehicle cabin is not only time consuming but also impractical.
Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

2017-01-10
2017-26-0304
The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.
Technical Paper

Vehicle Level Remote Range Improvement with Low Cost Approach

2012-04-16
2012-01-0789
Basic Function: Vehicle remote is used for vehicle lock/unlock/search/Hazard lights /approach light functions for customer convenience and vehicle security system. Conventional approach: 1 Use of separate RF (Radio Frequency) receiver -Additional Cost impact. 2 High remote RF power - Reduced remote battery life and bigger remote size required 3 High sensitivity RF receiver - High cost. Low Cost approach: It involves the followings: 1 Integration of RF receiver inside the Body Control Module (BCM). 2 Low Power Remote and Optimization of Remote PCB layout to get the maximum power. 3 External wired antenna taken out from BCM and proper routine need be ensured to get the best performance. 4 BCM mounting location to get the best remote range in all vehicle directions. This paper relates to the methodology for low cost approach for the RF communication between remote transmitter and receiver with achieving the best remote performance at vehicle level condition.
Technical Paper

A Comparative Study of Cradle and Sub Frame Type Powertrain Mounting System on Electric Vehicle

2021-08-31
2021-01-1022
The growing demand of fuel and cost saving on vehicle, today’s vehicle manufacturer are working on various weight reduction initiative in EV. Lighter weight vehicle have bigger challenges to meet NVH requirement. There are two types of EV called modified and adopted EV’s are commonly in use. The sub frame type of EV system comes under the category of modified EV. In this paper, a mounting system is studied and compared for a cradle type EV as well as sub frame or saddle type EV. MATLAB based optimization tools are used for parameter optimization. The focus is put on the optimization of mounting system location and stiffness for energy optimization, CoG and TRA-EA optimization. The best engine mounting system is compared and adopted based on simulation. 12 DOF studied to address high frequency resonance issues for a sub frame type EV. Finally robustness of the system is checked based on various simulation and optimization.
Technical Paper

Transient 1D Mathematical Model for Drum Brake System to Predict the Temperature Variation with Realistic Boundary Conditions

2017-01-10
2017-26-0299
Brake system is the most important system in the vehicle considering the overall vehicle safety and speed control. Brake applications are repetitive during a city traffic and hilly terrain on downhill gradient. Frequent braking gives rise to an overheating of the brake drum and its components. Braking operations at high temperature gives rise to problems like reduced deceleration due to loss of brake pad friction characteristics, pad softening and sticking to drum, pad distortion and wear etc. All these factors collectively result in deterioration of the braking performance and reduction of brake pad durability with time. Till date most of the thermal analysis performed for brake drum heating are through physical testing using brake system prototypes and by means of CFD tools. These methods are time consuming and expensive. There is a need for an alternative method to reduce physical trials and prototype building and reduce dependency on CFD analysis.
Technical Paper

ORVM Based Cabin Thermal Comfort - A Technological Approach

2023-09-14
2023-28-0042
Enriched ventilation and driver assistance systems which plays vital role in human thermal comfort and safety, are now necessities for the whole automotive sector. For faster cabin thermal comfort, air circulation around occupant’s body reveals higher cabin comfort index. In India natural and forced ventilation system is predominantly used in commercial vehicles as an economical solution for achieving interim cabin comfort over air conditioning system. Presently used forced ventilation system consist of electrically driven blower motor to remove stale air around human body which is adding alternator load and thus affects fuel economy. Remarkably, 22% of such auxiliary electrical load is taken by electrical components from engine generated power. In order to enhance cabin thermal comfort and conceivably reduce power usage, an effective air flow control system is need of hour.
Technical Paper

Prediction of Vehicle Headlamp Condensation Phenomenon Using Computational Fluid Dynamics

2021-09-22
2021-26-0325
The main task of the automotive headlights on cars is to illuminate the roadway and facilitate the driver fatigue-free and safe driving. An automotive headlamp is exposed to thermal variations during its operations and also exposed to the different environmental conditions. Automotive headlamp compartment is not completely sealed and vents are provided to exchange the air between environment and headlamp compartment for thermal cooling of the internal components. An automotive headlamp compartment is an environment with high thermal and low air flow exchanges with the ambient as results humidity can accumulated inside the headlamp compartment and there is a possibility of thin mist layer formation on the lens inner surface [1]. The combined use of numerical simulation and experimental studies is an important approach for headlamp design. This paper summarizes CFD simulation results for automotive headlamp condensation and de-condensation using ANSYS FLUENT.
Technical Paper

Analysis of Automotive Control Pedals Ergonomics through Mathematical Modelling Based on Human Anthropometry

2017-01-10
2017-26-0252
Vehicle Ergonomics is one of the most vital factor to be considered in vehicle design and development, as the customer wants a comfortable and performance oriented vehicle. An uncomfortable driving posture can lead to painful driving experiences for longer hauls. The control pedals viz. Accelerator, Brake and clutch pedal (ABC Pedals), are the most frequently used parts in the vehicle, their proper positioning with respect to human anthropology is of prime importance, from driver comfort viewpoint. The methodology currently used for optimizing ergonomics with respect to the positioning of pedals in a vehicle included; measuring anthropometric angles manually with the help of H-Point Machine, subjective jury analysis and through software like RAMSIS, JACK, etc. Manual measurement doesn’t give the flexibility of iterations for optimization. The subjective analysis is based on insinuations thereby, cannot be standardized.
Technical Paper

Development and Prediction of Vehicle Drag Coefficient Using OpenFoam CFD Tool

2019-01-09
2019-26-0235
Vehicle aerodynamic design has a critical impact on fuel efficiency of the vehicle. Reducing aerodynamic wind resistance of the vehicle's exterior shape and reducing losses associated with requirements for engine compartment cooling through vehicle front openings plays key role in achieving desired aerodynamic efficiency. Today fairly large number of computational fluid dynamics (CFD) simulations are being performed during the vehicle aerodynamic design and development process and it is rapidly increasing day by day. Vehicle aerodynamic design and development process involves mainly aerodynamic shape development, aerodynamic optimizations of vehicle external components (side view mirror, spoilers, underbody shield etc.) and number of” what if studies during preliminary design process. Licensing costs of the available commercial CFD simulation solver has significant impact on product development cost when numbers of aerodynamic simulations expand.
X