Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimizing an Automotive HVAC System for Enhancement of Acoustic Comfort

2021-09-15
2021-28-0147
The Indian automotive industry is going through a rapid transformation phase. Regulatory emission norms such as, migration from BSIV to BSVI engine, increased adoption of μ-hybrid, full electric and autonomous cars are examples of such rapid transformation. The upgradation of internal combustion engines for compliance with new regulatory norms (e.g., from BSIV to BSVI) has caused a significant change in the automotive acoustic performance. As the powertrain system are being upgraded and getting quieter, the on-board Heating, Ventilation and Air-Conditioning system (HVAC) system emerges as one of the prominent noise sources which strongly influences overall refinement levels inside the cabin. This in turns is affecting overall feeling of passenger’s comfort. The HVAC system of an automobile is a compact and yet a complex system designed to provide thermal comfort inside the car cabin.
Technical Paper

Challenges and Approaches of Electric Vehicles Powertrain Mount System Optimization for NVH, Buzz Squeak Rattle and Durability

2021-08-31
2021-01-1085
In electric vehicles, the powertrain mounting system design has challenges different from conventional internal combustion engine (ICE) powertrains. Due to the absence of source noise, the customer predominantly experiences the buzz, squeak and rattle (BSR) noise. The 6 degrees of freedom (DOF) modal frequency target is less stringent than a three-cylinder or four-cylinder ICE powertrain. The durability loads in EV also differ due to less powertrain weight. In this paper, a study has been carried out about balancing all three main performance parameters of modal decoupling, BSR and durability through powertrain mount design optimization. The article shows that a carryover ICE powertrain mount has typical issues in Electric Vehicle (EV). A case study has discussed in detail how to manage those issues. Finally, it is concluded that a particular focus is required during an early stage of mount design to address these challenges for an EV.
Technical Paper

Automotive Buzz, Squeak and Rattle Attenuation Technique from Front Suspension Assembly in Passenger Car

2021-08-31
2021-01-1087
BSR noise is an important parameters for customer discomfort. According to a market survey, squeaks and rattles are the third most important customer concern in cars after six months of ownership. The high quality acoustic environment of a car, annoying noises like buzz, squeak, and rattle is related to various parameters such as material assembly, tolerance, aging, humidity, surface contact, and surface hardness. BSR is originated from frictional movement between two parts or from the impact between two parts. The rattle noise is caused when surfaces close to each other move perpendicular to each other due to insufficient attachments or insufficient structural strength. In our study, we have shown the impact of various front suspension component in front suspension assembly on BSR noise and also the method to detect and attenuate the same. A methodical analysis process is shown to identify the contributing part and resolve the BSR issue.
Technical Paper

Machine Learning based Operation Strategy for EV Vacuum Pump

2021-09-22
2021-26-0139
In an automotive braking system, Vacuum pump is used to generate vacuum in the vacuum servo or brake booster in order to enhance the safety and comfort to the driver. The vacuum pump operation in the braking system varies from conventional to electric vehicles. The vacuum pump is connected to the alternator shaft or CAM shaft in a conventional vehicle, operates continuously at engine speed and supplies continuous vacuum to the brake servo irrespective of vacuum requirement. To sustain continuous operation, these vacuum pumps are generally oil cooled. Whereas in electric vehicles, the use of a motor-driven vacuum pump is very much needed for vacuum generation as there is no engine present. Thus, with the assistance of an electronic control unit (ECU), the vacuum pump can be operated only when needed saving a significant amount of energy contributing to fuel economy and range improvement and emission reduction.
Technical Paper

Sensitivity of LCA Bush Stiffness in Judder while Braking for Twist Blade Type Suspension in Passenger Cars

2021-09-22
2021-26-0513
This paper deals with specific NVH related issues attributed due to LCA bush stiffness and Brake rotor DTV. While the focus is on the cause of such vibration (judder while braking at 120 kmph), the presentation goes to the root-cause of judder and how various suspension/tire/brake components contribute to the generation/amplification of such vibration. Results are presented for twist blade types of vehicle suspensions, along with procedures that were developed specifically for this study and some of the actual case study. DTV-Disk thickness variation
Technical Paper

Cold Idle Gear Rattle in Manual Transmission Passenger Car-Temperature Based Phenomenon

2020-09-15
2020-01-2245
Gear rattle is due to impact noise of unloaded gears in transmission having freedom to move in backlash region. Engine order vibrations in the presence of backlash in meshing pairs induce the problem. It is a system behavior wherein flywheel torsional vibrations, the pre-damper characteristics and transmission drag torque plays a vital role in an engine idle condition (hot & cold). Idle rattle is a severe issue, which is highly noticeable in cold condition or after 1st engine crank. Gear rattling observed in idle condition is idle gear rattle or neutral gear rattle, specifically in cold condition is a “Cold idle rattle” and this is one of the critical noise parameters considered for entire vehicle NVH. Damper mechanism in the clutch, is used to serve better isolation (by reducing the input excitation to transmission parts) of vibrations between engine and transmission their by reducing gear rattle intensity.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
Journal Article

Performance Cascading from Vehicle-Level NVH to Component or Sub-System Level Design

2017-01-10
2017-26-0205
Before a physical proto-vehicle is assembled, various components or subsystems are ready by Tier-I or II suppliers. During final design judgement of the vehicle thru’ CAE or Mule-vehicle testing, performance target compliance need be assured for all these components to meet the Vehicle-level NVH targets. The work here studies some of the major components of a passenger car. Their individual NVH response can be critical to be cascaded for meeting the final targets for the vehicles running over roads. Conclusions of the study challenge some of traditional beliefs or generic targets. Often the component level response deviating from its own targets may not have an adverse influence on NVH of the vehicle facing multiple excitations from tyre/road, wind and power-train in a frequency band of interest.
Technical Paper

Engine Mount Stopper Design Techniques to Balance Vehicle Level Buzz, Squeak, Rattle and Durability

2020-04-14
2020-01-0401
In the highly competitive global automotive market and with the taste of customer becoming more refined, the need to develop high quality products and achieve product excellence in all areas to obtain market leadership is critical. Buzz, squeak and rattle (BSR) is the automotive industry term for the audible engineering challenges faced by all vehicle and component engineers. Minimizing BSR is of paramount importance when designing vehicle components and whole vehicle assemblies. Focus on BSR issues for an automobile interior component design have rapidly increased due to customer’s expectation for high quality vehicles. Also, due to advances in the reduction of vehicle interior and exterior noise, engine mounts have recently been brought to the forefront to meet the vehicle interior sound level targets. Engine mounts serve two principal functions in a vehicle, vibration isolation and engine support.
Technical Paper

Optimization of Engine Mounting System for First Gear Launch Judder

2020-04-14
2020-01-0416
Normal engine mounting system is designed to carry loads of powertrain in all driving conditions and also isolate the vibrations of powertrain. Softer mounts are good for vibration isolation but it is not recommended to have softer mounts because durability will be affected adversely. Optimum stiffness needs to be finalized which will have balance between durability and performance. In addition to durability many performance parameters needs to be checked during the time of development. This study includes the development of engine mounting system for elimination of drive away judder in first gear. Maximum peak torque value for the drive-away event is in the range of 80Nm - 120Nm. In the worst case, this peak torque can reach to maximum 170Nm depending on maneuver, engine rpm is around 1100-1200. Steering wheel, instrument panel and whole vehicle cabin will vibrate for few seconds and then vehicle will run smoothly.
Technical Paper

A Multiphysics Approach for NVH Analysis of PMSM Traction Motor

2021-09-22
2021-26-0520
Electric vehicles are fast expanding in market size, and there are increasing customer expectations on all aspects of the vehicle, including its noise and vibrational characteristics. Irritable noise from traction motors account for around 15% of the overall noise in an electric vehicle, and thus, has a need to be analysed and studied. This study focuses on identifying the critical vibro - acoustic orders for an 8 pole PMSM (Permanent Magnet Synchronous Motor) for three cases - healthy, with static eccentricity and with dynamic eccentricity. PMSM motors are widely used for traction and other applications due to their higher power density along with compact size. A coupled approach between electromagnetic and vibro - acoustic simulation is deployed to characterise the NVH behaviour of the motor.
Technical Paper

Experimental Analysis of HVAC System Level Noise in Mobile Air-Conditioning (MAC) System

2020-08-18
2020-28-0035
With the advent of new technologies and rigorous research and development work going on vehicle engines, cars are becoming quieter and more refined than ever before. This has led to the observance of subjective noises being audible to passenger compartment which were earlier masked behind engine noise. The vehicle HVAC system has several moving parts and transient flow of refrigerant which can cause certain types of irritant noise. Thus having a refinement in of air-conditioning (AC) system would aid us in cutting down on this parasitic noise source. Thus noise refinement should be one of the important parameters during the design and development of the Heating, Ventilation and Air-Conditioning (HVAC) system for a vehicle program.
Technical Paper

Systematic Approach for Optimizing Tailgate Stoppers and Its Location to Prevent Squeak and Rattle

2021-09-22
2021-26-0285
Tailgate stoppers play vital role in exerting preload on the Tailgate latch mechanism and also restrict the relative motion of the Tailgate against vehicle Body in White (BIW). These stoppers act as over-slam dampeners and reduce the transmissibility of vibrations thereby reduce the risk of Squeaks & Rattles (S&R) noises. S&R noises from Tailgate are most annoying to the rear passengers in the vehicle and are recurring in nature. Preventing these issues during design is a challenging task. S&R risk simulations enable us to conduct virtual Design of Experiments (DOEs) and arrive at optimal solutions. This approach helps in reducing the cost of the design changes that are required in the physical prototype at the later stages of product development and save time. The risk evaluation in the simulations is based on the relative displacement at the interfaces of two components.
Technical Paper

Development of Mount for Electric Powertrains - A Multi Degree of Freedom Optimization Approach

2020-04-14
2020-01-0417
The recent vehicle development demands for electric powertrain as against conventional fuels engines. The electric powertrain offers advantages in terms of cleaner and quieter operations. In electric vehicle, the conventional engine is replaced by electric motor operated on batteries. Here, the conventional engine refers to those powered by diesel, petrol, CNG and some hybrid vehicles using fuel as primary source for power generation. Thus, the system design approach for mount also changes. At present, various approaches are being followed to mount electric powertrain like conventional pendulum type, with or without cradle, Common or different motor and electric box mountings etc. The electric powertrain differs from conventional powertrain in terms of weights, mass moment of inertia, torque, NVH requirements like Key in Key off, idling, low frequency vibrations etc. Thus conventional mount will not necessarily meet NVH requirements for Electric powertrains.
Technical Paper

Development of IT Enabled System for Data Management to Meet EU Vehicle Recyclability Directives

2010-04-12
2010-01-0276
EU directive 2005/64/EC on type approval of motor vehicles with respect to their Reusability, Recyclability and Recoverability ( RRR ) requires vehicle manufacturers to put in place the necessary arrangements and procedures for Parts, Materials and Weight (PMW ) data collection from full chain of supply. This is required to perform the calculations of recyclability rate and recoverability rate in line with ISO 22628. Commonly practiced data collection methodologies included spreadsheet and use of internationally available IT support system for collection of material data. Data complexity and prohibitive cost for using Internationally available IT Support systems like IMDS (International Material Data System) has led to the in-house development of IT enabled Solution customizing Siemens PLM software product (Team centre Enterprise) and SAP (SRM suite).
Technical Paper

Elastomer Blend for Vibration Isolators to Meet Vehicle Key on - Key off Vibrations and Durability

2010-10-05
2010-01-1986
Success of the vehicle in the market depends on comfort provided while usage, which also include level of noise, vibration and harshness (NVH). In order to achieve good cabin comfort, the NVH levels have to be as low as possible. Powertrain is main source of NVH issues on vehicle and typically mounted on vehicle using rubber isolators. The dynamic characteristics of rubber isolators play vital role in reducing the vibrations transfer from powertrain to vehicle structure while operation and during dynamic conditions. Traditionally, isolators are manufactured using Natural Rubber (NR) to meet functional requirements which include vibration isolation and durability. At times either of above requirements has to be compromised or sacrificed due to the limitation in compounding process and other practical problems involved with manufacturing of rubber parts.
Technical Paper

Investigation of Frequent Pinion Seal and Hub Seal Leakages on Heavy Commercial Vehicles

2010-10-05
2010-01-2015
The automotive sector is going through a phase of stiff competition among various Original Equipment Manufacturers for increasing their profitability while ensuring highest levels of customer satisfaction. The biggest challenge for such companies lies in minimizing their overall cost involving investments in Research and Development, manufacturing, after sales service and warranty costs. Higher warranty costs not only affect the net profit but in turn it also affects the brand image of the company to a large extent in the long run. An effort is made here to target such warranty costs due to frequent tail pinion and hub seal leakages on single reduction/hub reduction axles of Heavy Commercial Vehicles in the field. A preliminary study involving the severity analysis of such failures is followed by a step by step investigation of these failures.
Technical Paper

Design Optimization of a Mini-Truck Hydraulic Power Steering System Based on Road Load Data (RLD)

2010-04-12
2010-01-0198
Today's automotive industry demands high quality component as well as system designs within very short period of time to provide more value added features to customers on one hand and to meet stringent safety standards on the other. To reconcile economy issues, design optimization has become a key issue. In the last few decades, many OEMs took to analytical tools like Computer-Aided-Engineering (CAE) tools in order to decrease the number of prototype builds and to speed up the time of development cycle. Although such analytical tools are relatively inexpensive to use and faster to implement as compared to the costly traditional design and testing processes: however, there are many variables that CAE tools cannot adequately consider, such as manufacturing processes, assembly, material anisotropy and residual stresses. Therefore, still smart measuring and testing techniques are required to substantiate the CAE results.
Technical Paper

Critique of Torsional Vibration Damper (TVD) Design for Powertrain NVH

2017-01-10
2017-26-0217
Crank train torsional vibration is an important aspect for design and development of Powertrain for NVH refinement and durability. Crank train torsional vibration parameters like angular acceleration of flywheel or twist, depends upon various design parameters like geometry of crankshaft, mass of flywheel, stiffness of clutch, mass of pulley etc. It also depends upon engine operating conditions like engine speed, engine load, combustion peak pressure and combustion pressure variation etc. Most of these parameters are decided by engine power, torque, engine architecture and packaging constraints. Addition of torsional vibration damper (TVD), which works on the principle of tuned dynamic absorber, is commonly deployed design solution to control the torsional vibrations as well as stresses (to improve durability of crank train) induced in crank train assembly at specified modal frequency.
Technical Paper

Improvement in Shift Quality in a Multi Speed Gearbox of an Electric Vehicle through Synchronizer Location Optimization

2017-03-28
2017-01-1596
Electrical and Series Hybrid Vehicles are generally provided with single speed reduction gearbox. To improve performance and drive range, a two-speed gearbox with coordinated control of traction motor and gearshift actuator is proposed. For a two-speed gearbox, gearshift without clutch would increase the shifting effort. Active Synchronization is introduced for a smoother gearshift even without clutch. The quality of gearshift is considered as a function of applied shift force and time taken. To enhance the quality of the gearshift further, the location of the synchronizer in the transmission system is optimized. To validate the improvement in the quality of the gearshift, a mathematical model of the two-speed gearbox incorporating proposed location of synchronizer assembly along with active synchronization is developed. The qualitative and quantitative analysis of the results achieved is presented.
X