Refine Your Search

Topic

Author

Search Results

Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Assessment of Passenger Car for Surface Dirt Contamination in Wind Tunnel

2021-09-22
2021-26-0385
Self-soiling or surface contamination is usual phenomenon observed during rainy season wherein dirt on road are picked by rotating wheel and later released in air as fine particles. These released dirt particles are further carried by airflow around vehicle and as a result stick on vehicle exterior surfaces leading to surface contamination. Surface dirt contamination is one of critical issues that need consideration during early phase of vehicle development as vehicle styling plays a critical role for airflow around vehicle and therefore settling of dirt on vehicle exterior surfaces. Non consideration of such aspects in design can lead to safety issues with likely non-functioning of parking sensors, camera and visibility issues through ORVM, tailgate glass etc. Hence it is important to understand physical as well as digital techniques for assessment of vehicle for surface dirt contamination.
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Engine Mount Stopper Design Techniques to Balance Vehicle Level Buzz, Squeak, Rattle and Durability

2020-04-14
2020-01-0401
In the highly competitive global automotive market and with the taste of customer becoming more refined, the need to develop high quality products and achieve product excellence in all areas to obtain market leadership is critical. Buzz, squeak and rattle (BSR) is the automotive industry term for the audible engineering challenges faced by all vehicle and component engineers. Minimizing BSR is of paramount importance when designing vehicle components and whole vehicle assemblies. Focus on BSR issues for an automobile interior component design have rapidly increased due to customer’s expectation for high quality vehicles. Also, due to advances in the reduction of vehicle interior and exterior noise, engine mounts have recently been brought to the forefront to meet the vehicle interior sound level targets. Engine mounts serve two principal functions in a vehicle, vibration isolation and engine support.
Technical Paper

Exhaust System Flange Joint Accelerated Durability - A Novel Way Converting Challenges to Opportunity

2021-09-22
2021-26-0472
The main objective of the exhaust system is to offer a leakage proof, noise proof, safe route for exhaust gases from engine to tailpipe, where they are released into the environment, while also processing them to meet the emission norms. New stringent emission norms demand ‘near-zero’ leakage exhaust systems, throughout vehicle life bringing the joints into focus as they are highly susceptible to leakage. Needless to say, this necessitates them to endure not only structural but also the environmental loads, throughout their life. Thus, the fatigue life or durability tests become the most critical part of the exhaust system development. Test acceleration and result correlation (for life prediction), to meet the stringent project timelines and stricter environmental norms are the key considerations for developing a new testing methodology. Quality of accelerated tests is ensured by deploying all possible multiple loads, to simulate real-life conditions.
Technical Paper

Design Optimization of a Mini-Truck Hydraulic Power Steering System Based on Road Load Data (RLD)

2010-04-12
2010-01-0198
Today's automotive industry demands high quality component as well as system designs within very short period of time to provide more value added features to customers on one hand and to meet stringent safety standards on the other. To reconcile economy issues, design optimization has become a key issue. In the last few decades, many OEMs took to analytical tools like Computer-Aided-Engineering (CAE) tools in order to decrease the number of prototype builds and to speed up the time of development cycle. Although such analytical tools are relatively inexpensive to use and faster to implement as compared to the costly traditional design and testing processes: however, there are many variables that CAE tools cannot adequately consider, such as manufacturing processes, assembly, material anisotropy and residual stresses. Therefore, still smart measuring and testing techniques are required to substantiate the CAE results.
Technical Paper

Jute Fibre Based Composite for Automotive Headlining

2011-04-12
2011-01-0224
With increased awareness about environmental issues, the trend of automobile industry is to use ‘Recycled’ or ‘Biodegradable’ or ‘Energy Recoverable’ material. As a part of this programme, to make the vehicle ‘Green’ in nature, many automobile OEMs have taken the initiative to make use of natural fibre composite in their vehicles. Natural fibre based composite has been successfully proven for less critical as well as for semi-structural applications in an automobile. These typical applications are insulations, headlining, carpets, door pad etc. There is a demanding task for automotive OEMs to meet 85% Recyclability and 95% Recoverability targets by year 2015. To meet the RRR (Reuse, Recycle & Recover) and the ELV (End of Life) regulatory requirements, increased use of natural fibre based composite/ biopolymers is unavoidable. Natural fibre can offer potential advantages such as weight saving and improve overall green rating of the vehicle.
Technical Paper

Grit Blasting on Synchronizer - To Resolve Early Crashing Complaint

2017-06-05
2017-01-1769
In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
Technical Paper

Radiated Noise Reduction in a Single Cylinder Direct Injection (DI) Naturally Aspirated (NA) Engine

2011-05-17
2011-01-1503
Small goods carrier and passenger vehicles powered by Naturally Aspirated (NA) Direct Injection (DI) diesel engines are popular in Indian automobile market. However, they suffer from inherently high radiated noise and poorly perceived sound quality. This paper documents the steps taken to reduce the radiated noise level from such an engine through structural modifications of major noise radiating components identified in the sound power analysis. The work is summarized as follows; Baseline radiated noise measurements of power train and identification of major noise sources through sound intensity mapping and noise source ranking (NSR) in an Engine Noise Test Cell (ENTC) Design modifications for identified major sources in engine structure Vehicle level assessment of the radiated noise in a Vehicle Semi-Anechoic Chamber (VSAC) for all the design modifications. A reduction of 7 dB at hot idle and 4 - 8 dB in loaded speed sweep conditions was observed with the recommended modifications.
Technical Paper

Test Methodology with Shock Loads and Fatigue Limit of Press Fitted Gears on Shaft

2013-11-27
2013-01-2794
In case of new generation of commercial vehicles, three shaft transmissions are designed with press fitted gears on counter shaft. It allows user to save the cost of transmission manufacturing by considerable amount. In case of heavy commercial vehicles, which are being used in abusive conditions such as mining and off-road applications, it becomes absolutely necessary to ensure that the gears press fit should withstand the continuous loads and impact loads. There are design guidelines available to ensure proper fit and torque carrying capacity between the mating parts. Still, there are gear slippage, shaft and gear breakage failures in the field. In this scenario, there is a need to develop bench test procedure which will capture such failures in the prototype stage. Looking at the failures in the field, it is necessary to capture all above hidden failures in design validation phase.
Technical Paper

Evaluation of Anti Scratch Additives on Polypropylene Compound

2013-04-08
2013-01-1391
Automotive Industry is constantly upgrading the value offered on their products at optimized cost. Scratch and mar resistance of interiors and exterior parts, is an important attribute which is linked to perceived quality and value offered to customers. Polypropylene material is optimum material of choice for these parts due to its unique advantages. However, filled polypropylene material has poor scratch and mar resistance. Many techniques for scratch resistance improvement are available such as additions of slip agents, co additives, special fillers, siloxanes, etc. However, some of them may offer some disadvantages like stickiness or tackiness on the surfaces. The choice depends on its effectiveness & cost. This paper deals with design of experiments to evaluate effectiveness of 4 types of additives and their optimum % to give scratch resistance improvement without having detrimental impact on other critical properties.
Technical Paper

Simulation of Clutch Inertial Effects on Gear Shifting, Synchronizer Capacity and Accelerated Testing of Synchronizers

2013-11-27
2013-01-2807
In today's scenario, most of the OEMs use manual transmissions with synchronizer gear shifting system for ease of gear shifting. It gives very high fuel efficiency. Gear shifting is a customer touch point, hence it is very important to select adequate synchronizer capacity so that it will perform in better and last longer. To test the synchronizers, there are many test methods which give the idea about life of synchronizer and its performance, in different conditions. Regular synchronizer rig tests consume lot of time in deriving the results. So it is very important to find out a way which will give same results within short time period. To carry out the short time test or accelerated test, we need to understand the effect of various factors like reflected inertia, drag torque, differential speed, synchronizing time, and gear shifting force on synchronizer capacity.
Technical Paper

NVH Refinement of Small Gasoline Engine through Digital and Experimental Approach

2017-01-10
2017-26-0211
Today’s competitive market demands for low cost passenger cars with lighter, smaller size, peppy response and fuel efficient engines and having world class NVH refinement levels. For such requirements, it is essential to optimize the product starting from the design conceptual stage, considering all performance aspects. Generally, three cylinder engines, due to less reciprocating masses, compared to four-cylinder engine, are said to be fuel efficient for the same capacity. Nevertheless, NVH problems caused by inherent imbalance forces and couples remain as drawback of the three-cylinder engine. However, through optimal design of the crank train, control of cylinder to cylinder pressure variation, stiffening of the engine structure, optimizing the integration with a vehicle through proper design of mounts, NVH refinement levels can be improved.
Technical Paper

Simulation of Heavy Commercial Vehicle Response to Rear Super Single Tire Blow Out

2017-01-10
2017-26-0341
The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
Technical Paper

A Novel Technique to Establish Various Important Characteristic to Analyze Complete Hydraulic Power Steering System using Model Based Design Approach

2017-01-10
2017-26-0259
Steering system deliver a precise directional control to the vehicle chassis and ensure the safe driving at all maneuvers. Hydraulic power assisted system (HPAS) helps drivers to steer by boosting steering assistance of the steering wheel while retaining the road feel. HPAS performance is associated with the design characteristics of rotary valve, steering, suspension, kinematics, brake, tire, vehicle speed and load transfer. Thus a detailed power steering system model is absolutely necessary to evaluate and optimize the performance characteristics. However, many components of HPAS system are proprietary in nature so it is very challenging to get component characteristic of each sub-system for the complete power steering system model. Hence, it is very important to establish a technique to extract all such influencing characteristics with available test facility.
Technical Paper

CAE Based Head Form Impact Simulations for Development of Vehicle Interiors

2019-01-09
2019-26-0237
The interior components of a passenger vehicle are designed to provide comfort and safety to its occupants. In the event of accident, vehicle interiors are primary source of injuries when occupants interact with them. Vehicle interiors consists of Instrument panel (IP), center console, seats and controls in front of seating position etc. Severity of the injuries depends on the energy dissipating characteristics, profiles, projections of different interior components. These are assessed by ECE R21 and IS12553 head form impact tests. To evaluate the Head form impact performance on Interior components, Computer Aided Engineering (CAE) simulations are extensively used during the vehicle development. In order to predict failure of plastic components and snap joints which might lead to expose sharp edges, it is critical to model plastic material and snap joint.
Technical Paper

Electro-Magnetic Parking Brake System for Electric Vehicles

2019-01-09
2019-26-0119
Regular vehicle has the advantage of Engine resistance even when it is not fired, hence chances of vehicle roll back on gradients will be minimized. This is not the case for Electric vehicles, which uses an electric motor that does not have any resistance offered to wheels that prevent vehicle roll back on gradient. This leads to increased load on the conventional hydraulic brakes due to absence of engine inertia. Hence, there is a need for a low cost and reliable automatic braking system which can help in holding the vehicle and assists the driver during launch in case he need to stop at a gradient. An Electromagnetic brake (EM brake) system can be used as a solution for the above-mentioned requirement. EM brake can provide hill hold and hill assist effect in addition to automatic parking brake application when the vehicle is turned-off. This system will assist anyone who need to halt the vehicle at a gradient and then relaunch it without much struggle.
Technical Paper

A Robust Solution for a Power-Train Mounting System for Automotive NVH Refinements

2015-01-14
2015-26-0140
Production variations of a heavy duty truck for its vibrations were measured and then analyzed through an Ishikawa diagram. Noise and Control factors of the truck idle shake were indentified. The major cause was found to be piece to piece variations of its power-train (PT) rubber mounts. To overcome the same, a new nominal level of the mount stiffness was sought based on minimization of a cost function related to vibration transmissibility and fatigue damage of the mounts under dynamic loadings. Physical prototypes of such mounts were proved to minimize the variations of the driver's seat shake at idling among various trucks of the same design. These learning's are useful for design of various subsystems or components to refine the full vehicle-Noise Vibration Harshness (NVH) at the robust design level.
Technical Paper

External Aerodynamic Drag Coefficient Prediction of Full Scale Passenger Car Based on Scale Model Assessment

2019-01-09
2019-26-0224
Aerodynamics performance evaluation of passenger cars is important during early vehicle development phase as it influences fuel economy, vehicle stability and drivability. Usually during initial styling phase, scale model is prepared and tested in wind tunnel to check aerodynamic performance like drag coefficient and these are used to predict aerodynamic performance of full scale model as testing on full scale model is costly and time consuming. To ensure its correctness, it is important to understand difference in physics from scale model to full scale model. In predicting full vehicle aerodynamics performance from scale model assessment; importance of Reynolds number, effect of geometric scaling on flow i.e. flow separation and wake zone change needs to be understood and addressed. This paper discusses about effect of scaling on aerodynamic flow behavior and drag.
X