Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Approach to Model AC Compressor Cycling in 1D CAE with Enhanced Accuracy of Cabin Cooldown Performance Prediction

2021-09-22
2021-26-0430
In previous work, AC Compressor Cycling (ACC) was modeled by incorporating evaporator thermal inertia in Mobile Air Conditioning (MAC) performance simulation. Prediction accuracy of >95% in average cabin air temperature has been achieved at moderate ambient condition, however the number of ACC events in 1D CAE simulation were higher as compared to physical test [1]. This paper documents the systematic approach followed to address the challenges in simulation model in order to bridge the gap between physical and digital. In physical phenomenon, during cabin cooldown, after meeting the set/ target cooling of a cabin, the ACC takes place. During ACC, gradual heat transfer takes place between cold evaporator surface and air flowing over it because of evaporator thermal inertia.
Technical Paper

Approach to Model Thermistor Based AC Compressor Cut-OFF/Cut-IN Phenomenon in 1D Simulation of Mobile Air Conditioning

2019-01-09
2019-26-0287
This paper documents the approach followed to simulate the physical phenomenon of thermistor based AC compressor Cut-OFF/Cut-IN (AC compressor cycling) in 1-Dimensional Computer Aided Engineering (1D CAE) to enable Mobile Air Conditioning (MAC) performance prediction at different ambient conditions. Thermistor based AC compressor cycling logic is incorporated in MAC systems to prevent ice formation at evaporator core and liquid refrigerant flow to AC compressor. Currently, during MAC system performance simulation over a transient drive cycle, the 1D models are able to predict cabin cooldown performance for severe ambient conditions (>40°C, high solar load) with >95% accuracy, as in these cases AC compressor cycling due to thermistor doesn’t occur at higher ambient.
X