Refine Your Search

Topic

Author

Search Results

Journal Article

Practical Approach to Develop Low Cost, Energy Efficient Cabin Heating for Extreme Cold Operating Environment

2011-04-12
2011-01-0132
In cold climatic regions (25°C below zero) thermal comfort inside vehicle cabin plays a vital role for safety of driver and crew members. This comfortable and safe environment can be achieved either by utilizing available heat of engine coolant in conjunction with optimized in cab air circulation or by deploying more costly options such as auxiliary heaters, e.g., Fuel Fired, Positive Temperature Coefficient heaters. The typical vehicle cabin heating system effectiveness depends on optimized warm/hot air discharge through instrument panel and foot vents, air directivity to occupant's chest and foot zones and overall air flow distribution inside the vehicle cabin. On engine side it depends on engine coolant warm up and flow rate, coolant pipe routing, coolant leakage through engine thermostat and heater core construction and capacity.
Technical Paper

Customized and Market Specific Thermal Robust Clutch System Solution

2021-09-21
2021-01-1239
The goal of reducing fuel consumption and CO2-Emission is leading to turbo-charged combustion engines that deliver high torque at low speeds (down speeding). To meet NVH requirements damper technologies such as DMF (Dual Mass Flywheel) are established, leading to reduced space for the clutch system. Specific measures need to be considered if switching over from SMF (Single Mass Flywheel) to DMF [8]. Doing so has an impact on thermal behavior of the clutch system, for example due to reduced and different distribution of thermal masses and heat transfer to the surroundings. Taking these trends into account, clutch systems within vehicle powertrains are facing challenges to meet requirements e.g. clutch life, cost targets and space limitation. The clutch development process must also ensure delivery of a clutch system that meets requirements taking boundary conditions such as load cycles and driver behavior into account.
Journal Article

Perceptible Roll

2015-04-14
2015-01-1585
In case of design of passenger vehicles, one of the priorities is how the dynamics behavior shall be perceived by the vehicle occupants. One of many such handling parameters is the vehicle body roll, which is usually quantified by the vehicle's Steady State Roll Gradient. This number gives an indication of the rotation of the vehicle body in response to unit lateral force acting on the vehicle, as in the case of cornering. However it does not necessarily indicate the roll as sensed by a person seated inside it. A study showed that the subjective feel is not entirely dependent on roll gradient. In some cases the occupant may feel more confident and comfortable in a vehicle with a relatively higher roll gradient, or vice versa. In such cases, designing for roll gradient alone may not serve the purpose of secure and comfortable feel. To account for this discrepancy, a study was carried out to quantify the motion felt by the occupant.
Journal Article

Front Under Run Protection Device Strength Test Certification Through FE Simulations

2011-04-12
2011-01-0529
Passive safety regulations specify minimum safety performance requirements of vehicle in terms of protecting its occupants and other road users in accident scenarios. Currently for majority cases, the compliance of vehicle design to passive safety regulations is assessed through physical testing. With increased number of products and more comprehensive passive safety requirements, the complexity of certification is getting challenged due to high cost involved in prototype parts and the market pressures for early product introduction through reduced product development timelines. One of the ways for addressing this challenge is to promote CAE based certification of vehicle designs for regulatory compliance. Since accuracy of CAE predictions have improved over a period of time, such an approach is accepted for few regulations like ECE-R 66/01, AIS069 etc which involves only loadings of the structures.
Journal Article

Vehicle Level Approach for Optimization of On-Board Diagnostic Strategies for Fault Management

2013-04-08
2013-01-0957
As the vehicle functions are getting distributed over multiple ECUs in order to realize various complex control functions, the need for sophisticated on-board diagnostic strategies are increasing in automotive domain, leading to a significant amount of hardware and software implementations for fault management inside various ECUs in the vehicle. This paper proposes optimized vehicle level approach for fault management strategies, wherein a centralized intelligent Gateway Module is proposed in the vehicle network architecture, which will be responsible for fault management of the complete vehicle in a chronological sequence. This Gateway Module will thereby have the possibility to group a cluster of faults raised by different ECUs and correlate them meaningfully to guide the operator towards root cause of the fault.
Technical Paper

Suspension Testing using Wheel Forces on a 3 DOF Road Load Simulator

2008-04-14
2008-01-0223
The use of Wheel Force Transducers (WFTs) to acquire data for laboratory simulation is becoming standard industry practice. However, in test rigs where we have only the suspension module and not the complete vehicle, does the reproduction of the orthogonal forces and moments at the wheel centre guarantee an accurate replication of the fatigue damage in the suspension components? The objective of this paper is to review the simulation methodology for a highly non-linear suspension in a 3 DOF (degree-of-freedom) suspension test rig in which the simulation was carried out using only the three orthogonal loads and vertical displacement. The damage at critical locations in the suspension is compared with that on the road and an assessment of the simulation using the WFT is made based on a comparison of the damage on the road vs. the rig.
Technical Paper

A Novel and Low Cost Strategy for Distance Logging in EEPROM for OBD-I Compliance

2011-04-12
2011-01-0708
On Board Diagnostics norms enforced by regulatory authorities of many countries require logging of distance traveled by the vehicle with MIL (malfunction indicator lamp) illuminated. This log needs to be maintained in non-volatile ECU memory. Conventional techniques maintain the log in a volatile memory during vehicle run-time and transfer the same to non-volatile memory when ignition is turned off. This requires use of a “power-hold” relay to keep an ECU power alive while the logged data in volatile memory is being transferred to non-volatile memory when ignition is switched-off. A novel strategy described in this paper avoids interface with power-hold relay, thereby reducing the system complexity. The design philosophy described makes use of an EEPROM to maintain the distance log. An innovative algorithm is employed to ensure that endurance specifications are not violated during the vehicle life-time.
Technical Paper

Feed Forward and Integral Control of an EGR Valve

2011-04-12
2011-01-0689
Automotive embedded control systems need to implement real-time closed-loop control strategies for controlling valves, motors, etc. The implementation needs to focus on use of low cost hardware and efficient software with minimal foot-print so as to adequately meet the application requirement. This paper highlights the low cost hardware and software design concepts by way of a case study related to control of progressive EGR valve. The control strategy is based on "map-driven set-points" where percentage opening of the valve is stored in the form of 16x16 matrices. The set-points are accessed based on instantaneous throttle and engine rpm values which form the row and column indices of the map. The closed loop control algorithm eliminates the need for multiplication by implementing "feed-forward with integral control algorithm." A feed-forward map specifies the most likely PWM duty cycle to be applied to the valve for a given set-point.
Technical Paper

Hill Start Assistance Developed for Buses Equipped with AMT

2016-04-05
2016-01-1111
The AMT (Automated Manual Transmission) has attracted increasing interest of automotive researches, because it has some advantages of both MT (Manual Transmission) and AT (Automatic Transmission), such as low cost, high efficiency, easy to use and good comfort. The hill-start assistance is an important feature of AMT. The vehicle will move backward, start with jerk, or cause engine stalling if failed on the slope road. For manual transmission, hill-start depends on the driver's skills to coordinate with the brake, clutch and throttle pedal to achieve a smooth start. However, with the AMT, clutch pedal is removed and therefore, driver can’t perceive the clutch position, making it difficult to hill-start with AMT without hill-start control strategy. This paper discussed about the hill start control strategy and its functioning.
Technical Paper

An Engine Stop Start System with Driver Behavior Learning and Adaption for Improving the User Experience

2018-04-03
2018-01-0609
Engine Stop/Start System (ESS) promises to reduce greenhouse emissions and improve fuel economy of vehicles. Previous work of the Authors was concentrated on bridging the gap of improvement in fuel economy promised by ESS under standard laboratory conditions and actual driving conditions. Findings from the practical studies lead to a conclusion that ESS is not so popular among the customers, due to the complexities of the system operation and poor integration of the system design with the driver behavior. In addition, due to various functional safety requirements, and traffic conditions, actual benefits of ESS are reduced. A modified control algorithm was proposed and proven for the local driving conditions in India. The ways in which a given driver behaves on the controls of the vehicles like Clutch and Brake Pedals, Gear Shift Lever were not uniform across the demography of study and varied significantly.
Technical Paper

Spot Weld Failure Prediction in Safety Simulations Using MAT-240 Material Model in LS-DYNA

2015-01-14
2015-26-0165
Spot welding is the primary joining method used in automobiles. Spot-weld plays a major role to maintain vehicle structural integrity during impact tests. Robust spot weld failure definitions is critical for accurate predictions of structural performance in safety simulations. Spot welds have a complex metallurgical structure, mainly consisting of fusion and heat affected zones. For accurate material property definitions in simulation models, huge number of inputs from test data is required. Multiple tests, using different spot weld joinery configurations, have to be conducted. In order to accurately represent the spot-weld behavior in CAE, detailed modeling is required using fine mesh. The current challenge in spot-weld failure assessment is developing a methodology having a better trade-off between prediction accuracy, testing efforts and computation time. In view of the above, cohesive zone models have been found to be very effective and accurate.
Technical Paper

Approach for Dynamic Analysis of Automotive Exhaust System

2008-10-07
2008-01-2666
The automotive industry is heading in the direction of signing off the exhaust system durability based on computer simulation rather than rig simulation and physical vehicle testing. This is due to the cost, time and availability of prototype vehicles and test track. Use of Finite Element Method (FEM) enables to assure the structural integrity of the exhaust system and also contribute to better understanding of the system behavior in the various operating conditions and evaluation of structural strength. This paper deals with dynamic analysis of a modular automotive exhaust system where it is directly mounted on power train pack. Selection of dynamic loads, processing of the test data, and effect of assembly loads along with material property variation due to temperature are explained. It also includes validation of the CAE model, prediction of probable failure locations and improving the design based on analysis outcome.
Technical Paper

A Feedback and Feedforward Control Algorithm for a Manual Transmission Vehicle Simulation Model

2018-04-03
2018-01-1356
Authors were challenged with a task of developing a full vehicle simulation model, with a target to simulate the electrical system performance and perform digital tests like Battery Charge Balance, in addition to the fuel efficiency estimation. A vehicle is a complicated problem or domain to model, due to the complexities of subsystems. Even more difficult task is to have a control algorithm which controls the vehicle model with the required control signals to follow the test specification. Particularly, simulating the control of a vehicle with a manual transmission is complicated due to many associated control signals (Throttle, Brake and Clutch) and interruptions like gear changes. In this paper, the development of a full vehicle model aimed at the assessment of electrical system performance of the vehicle is discussed in brief.
Technical Paper

Investigation and Reduction of Brake Squeal and Groan Noise

2015-09-27
2015-01-2687
Brake noise is one of the common complaints and an irritant not just for the vehicle occupants but equally for the passers-by. Brake noise is actually vibration that is occurring at a frequency that is audible to the human ear. This occurrence of brake noise like brake squeal (>1 kHz) and groan (<1 kHz) is often very intense and can lead to vehicle complaints. During a brake noise event, vehicle basic structure and suspension system components are excited due to brake system vibration and result in a resonance that is perceived in the form of a noise. Proposed work discusses an experimental study that is carried out on a vehicle for addressing concern regarding disc brake squeal and groan noise. Based on the preliminary inputs, vehicle level study was carried out in order to simulate the problem and objectively capture its severity.
Technical Paper

An Effort to Build Mathematical Model using Time Series Analysis to Aid Steering Auto-Correction in Heavy Commercial Vehicle during High Speed Braking

2015-09-29
2015-01-2763
Steering pull during high speed braking of heavy commercial vehicles possesses a potential danger to the occupants. Even with negligible wheel-to-wheel brake torque variation, steering pull during the high speed braking has been observed. If the steering pull (i.e. steering rotation) is forcibly held at zero degree during high speed braking, the phenomena called axle twist, wheel turn and shock absorber deflection arise. In this work the data have been collected on the mentioned measures with an intention to develop a mathematical model which uses real time data, coming from feedback mechanism to predict the values of the measures in coming moments in order to aid steering system to ‘auto-correct’. Driven by the intention, ‘Time Series Analysis’, a well-known statistical methodology, has been explored to see how suitable it is in building the kind of model.
Technical Paper

Mathematical Model to Evaluate and Optimize the Dynamic Performance of Pneumatic Brake System

2015-01-14
2015-26-0082
Pneumatic brake system is widely used in heavy truck, medium and heavy buses for its great superiority and braking performance over other brake systems. Pneumatic brake system consists of various valves such as Dual Brake Valve (DBV), Quick release Valve (QRV), Relay Valve (RV), Brake chambers. Dynamics of each valve is playing a crucial role in overall dynamic performance of the braking system. However, it is very difficult to find the contribution of each valve and pipe diameters in overall braking performance. Hence, it is very difficult to arrive a best combination for targeted braking performance as it is not possible to evaluate all combination on the actual vehicle. Hence, it is very important to have a mathematical model to optimize and evaluate the overall braking performance in early design phase. The present study is focusing on the mathematical model of a pneumatic brake circuit.
Technical Paper

Shock Tube Simulation in LS-DYNA for Material Failure Characterization

2014-04-01
2014-01-0937
Shock tube is used to simulate blast loading conditions on materials for studying the failure behavior of different materials under blast pressures on smaller scale. This paper describes CAE method developed for simulating shock tube experiment in LS-DYNA3D environment. The objective of shock tube simulation is to characterize material failure parameters so as to predict risk of material failure in full vehicle blast simulations while developing vehicle for blast protection applications. The paper describes modeling of shock wave and its interaction with test specimen in shock tube environment. Arbitrary Lagrangian-Eulerian (ALE) techniques are applied to simulate shock tube experiment in LS-DYNA3D and simulation predictions are compared with experimental test data. CAE correlation studies were carried out with respect to incident and reflected pressures in shock tube, deformation and plastic strains on test specimen, shock wave velocity etc.
Technical Paper

Virtual Road Torque Data Collection

2019-01-09
2019-26-0289
The traditional method of collecting the Road Torque Data of a vehicle is by instrumenting and running the vehicle on different road terrains. Every time, physical testing becomes tedious & most challenging task due to unavailability of unit under tests, kind of resource required and so on. However, in view of response to the fast emerging technology & limit less competition, it has become mandatory to develop & launch products in market within no time. In recent times, there is increased demand for physical road torque data measurements for a vehicle program based on its application and different powertrain configurations, which clearly shows that unless we front load the data to design it is practically impossible to meet the deadlines. Each of these measurements cost and consumes valuable resources of the company in collecting and analyzing the data.
Journal Article

1D Mathematical Model Development for Prediction and Mitigation of Vehicle Pull Considering Suspension Asymmetry and Tire Parameters

2021-09-22
2021-26-0502
Error in suspension asymmetry or tire parameters may lead to vehicle drifting laterally from its intended straight-line path, which is called vehicle pull. Driver then needs to apply constant steering correction to maintain the vehicle in straight line which will lead to high driver fatigue and deteriorate driving experience. Manufacturing a perfectly symmetric suspension system is impractical, however an insight into the manufacturing tolerances of suspension system at the early design stage can be extremely useful. Also tire force and moment parameters at straight line operation and its maximum allowable variations will help in defining the tire parameter specifications and tolerances. The objective of this study was to develop a 1D model of suspension and tire system which can predict the torque experienced in steering and drift of the vehicle from straight line due to the tire force and moment and asymmetric suspension geometry.
Technical Paper

Model-Based System Engineering Approach for Steering Feel Simulation for Passenger Vehicles

2021-09-22
2021-26-0400
The basic function of steering system is to control the direction of the vehicle. The driver applies effort on the steering wheel and receives feedback through the steering system as a result of tire to road interaction. This feedback consists of a haptic (force) feedback which is directly felt by the driver and it is termed as steering feel. Precise steering feel gives better driving experience and is decisive factor for customer to buy a vehicle as well as for OEMs in building brand image. Along with steering parameters, suspension and tire parameters also has significant impact on steering feel. In past, modelling of the steering system was done at component level or with simplified vehicle system. Such approaches had not given accurate results of steering feel metric and resulted in incorrect steering design parameter selection. In order to replicate actual vehicle characteristics, complex and detailed modelling of steering, tire and suspension subsystems is necessary.
X