Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Influence of Vehicle Front End Design on Pedestrian Lower Leg Performance for SUV Class Vehicle

2011-04-12
2011-01-0084
Accident statistics shows pedestrian accident fatalities as one of the important concerns globally. In view of this, new test protocols for pedestrian safety have been drafted in regulation as well as in consumer group. Also as per new ENCAP requirements, pedestrian safety assessment is used as one of the four assessment criteria's (Adult protection, child safety, pedestrian safety, safety assist) in deciding the overall vehicle safety. Hence today importance of pedestrian safety is perceived as never before in vehicle development program. Basically pedestrian safety evaluation involves subsystem level (head form, upper leg form and lower leg form) impact tests representing human body parts, at specific region on test vehicle with injury limits to decide the severity of impact. In general these injuries are governed by vehicle styling, vehicle stiffness, hard points clearances from vehicle exterior like bonnet, bumper etc.
Technical Paper

Improved Calculation Methodology for Design of Connecting Rod Considering Fatigue Loads and Stresses in IC Engine

2020-09-25
2020-28-0335
In this work, Calculations and design of connecting rod of IC engine is performed in innovative way. Calculation point of view, Con rod is the utmost critical component of IC Engine as it is the part which translates reciprocating forces into rotary forces and thus creates unbalance in engine. From the functionality point of view, connecting rod must have the higher inertia at the lowest weight. Different forces acting on con rod are: - Peak combustion pressure, inertia force of reciprocating masses, Weight of Reciprocating parts and frictional forces due to cylinder wall thrust. It experiences complex forces of compression and tensile in cyclic manner, which repeats after each 720 (in case of 4 stroke) or 360 (in case of 2 stroke) phase of degree. Hence, the design calculations are analyzed for the axial compressive as well as axial tensile loads considering the fatigue strength of con rod. This literature computes the required size and strength in the critical areas of failure.
Technical Paper

Design & Development of Metal Matrix Based Mounting Bracket for Commercial Vehicle Application

2020-09-25
2020-28-0463
Automakers are being subjected to increasingly strict fuel economy requirements which led OEMs to focus more on Light weighting and Energy efficiency areas. Considering the aforesaid challenges, efforts have been taken in Light weighting of mounting bracket for Engine application. This paper deals with conversion of Engine accessory bracket from Aluminum material to Metal Matrix composite (MMC). In Design phase, existing bracket has been studied for its structural requirements and further Bracket is designed to meet MMC process requirement and CAE carried out for topology optimization and Structural integrity. Finally observations and results were compared for Existing design and Proposed design and further optimization proposed.
Technical Paper

Reduce Cost of Product Design using Unit FE Simulation

2016-04-05
2016-01-1371
The unit analysis methodology can be used for designing component or product in a product development process. This method may be used for designing the crush can, bumper beam, crush can long member, B-frame or A-pillar in frontal impact analysis. Unit assembly model technique can be effectively used in many CAE load cases to evaluate CAE simulations such as pedestrian impact analysis (ECE R78 / ENCAP), interior trim related head impact simulations (FMVSS201U), under run protection simulation for commercial vehicles (Front Underrun Protection Device ECE R93, Rear Underrun Protection Device ECE R58, Side Underrun Protection Device ECE R73), airbag deployment optimization etc. These CAE analyses correlate better with actual test. This paper gives idea about how the cost of product design can be reduced by using unit analysis. To reduce time of vehicle development such as cost of prototype, testing cost, optimization cost unit analysis is more economical.
Technical Paper

Influence of Honeycomb Cellular Meso-structure on Frontal Crash Analysis for Passenger Vehicle

2017-03-28
2017-01-1301
Frontal collisions account for majority of car accidents. Various measures have been taken by the automotive OEMs’ with regards to passive safety. Honeycomb meso-structural inserts in the front bumper have been suggested to enhance the energy absorption of the front structure which is favorable for passive safety. This paper presents the changes in energy absorption capacity of hexagonal honeycomb structures with varying cellular geometries; under frontal impact simulations. Honeycomb cellular metamaterial structure offers many distinct advantages over homogenous materials since their effective material properties depend on both, their constituent material properties and their cell geometric configurations. The effective static mechanical properties such as; the modulus of elasticity, modulus of rigidity and Poisson’s ratio of the honeycomb cellular meso-structures are controlled by variations in their cellular geometry.
Technical Paper

Challenges in Selection of Restraints Sensing Configurations in Context of Real World Applications

2013-01-09
2013-26-0028
Restraints systems (airbags and seat belts) have been proven to be very effective in occupant protection in crashes. Timely deployment of these devices is very essential for meeting performance requirements. Precision and reliability in restraints deployments demand selection of a robust sensing configuration that caters to the wide variations of real world. This paper highlights complexities involved in engineering of restraints sensing configurations through different case studies on vehicle programs. The paper explains the need for restraints sensing configuration optimization and well defined sensing strategies for a robust solution in real world. A methodology is discussed to achieve good discrimination between crashes of different types and severities. Virtual and physical test data collected at different stages of vehicle development is used. It is found that criteria for threshold levels in restraints sensing requires efforts to identify real world usage variations.
Technical Paper

Performance Driven Package Feasibility of Side Restraints Using KBE Tools

2013-01-09
2013-26-0027
Integrating safety features may lead to changes in vehicle interior component designs. Considering this complexity, design guidelines have to take care of aspects which may help in package feasibility studies that consider systems performance requirements. Occupant restraints systems for protection in side crashes generally comprise of Side Airbag (SAB) and Curtain Airbag (IC). These components have to be integrated considering design and styling aspects of interior trims, seat contours and body structure for performance efficient package definition. In side crashes, occupant injury risk increases due to hard contact with intruding structure. This risk could be minimized by cushioning the occupant contact through provision of SAB and Inflatable IC. This paper explains the methodology for deciding the package definitions using Knowlwdge Based Engineering (KBE) tools.
Technical Paper

A Study on Improvements in Side Impact Test vs CAE Structural Correlation

2013-01-09
2013-26-0034
Computer Aided Engineering (CAE) plays an important role in the product development. Now a days major decisions like concept selection and design sign off are taken based on CAE. All the Original Equipment Manufacturers (OEMs) are putting consistent efforts to improve accuracy of the CAE results. In recent years confidence on CAE prediction has been increased mainly because of good correlation of CAE predictions with the test results. Defining proper correlation criteria and using a systematic approach helps significantly in building the overall confidence level for predictions given by CAE simulations. Representation of manufacturing effects on material properties and material failure in the simulation is still a big challenge for achieving a good CAE correlation. This paper describes side impact test vs CAE correlation. The important parameters affecting the CAE correlation were discussed.
Technical Paper

Pedestrian Head Form and Lower Leg Impact Sensitivity Study Through CAE Simulations

2013-01-09
2013-26-0035
Pedestrian impact test procedures allow tolerances on test conditions of impact such as mass of the impactor, impactor position, impact speed etc. The variation in these parameters affects the injury measurements in a test. This paper focuses on sensitivity study of variations in these parameters, within specified tolerances, on head form impact and lower leg impact injury measurements. The aim of this sensitivity study is to find out the most influencing test parameter for the injuries. The exercise was carried out using Computer Aided Engineering (CAE) simulations.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

An Engine Stop Start System with Driver Behavior Learning and Adaption for Improving the User Experience

2018-04-03
2018-01-0609
Engine Stop/Start System (ESS) promises to reduce greenhouse emissions and improve fuel economy of vehicles. Previous work of the Authors was concentrated on bridging the gap of improvement in fuel economy promised by ESS under standard laboratory conditions and actual driving conditions. Findings from the practical studies lead to a conclusion that ESS is not so popular among the customers, due to the complexities of the system operation and poor integration of the system design with the driver behavior. In addition, due to various functional safety requirements, and traffic conditions, actual benefits of ESS are reduced. A modified control algorithm was proposed and proven for the local driving conditions in India. The ways in which a given driver behaves on the controls of the vehicles like Clutch and Brake Pedals, Gear Shift Lever were not uniform across the demography of study and varied significantly.
Technical Paper

A Feedback and Feedforward Control Algorithm for a Manual Transmission Vehicle Simulation Model

2018-04-03
2018-01-1356
Authors were challenged with a task of developing a full vehicle simulation model, with a target to simulate the electrical system performance and perform digital tests like Battery Charge Balance, in addition to the fuel efficiency estimation. A vehicle is a complicated problem or domain to model, due to the complexities of subsystems. Even more difficult task is to have a control algorithm which controls the vehicle model with the required control signals to follow the test specification. Particularly, simulating the control of a vehicle with a manual transmission is complicated due to many associated control signals (Throttle, Brake and Clutch) and interruptions like gear changes. In this paper, the development of a full vehicle model aimed at the assessment of electrical system performance of the vehicle is discussed in brief.
Technical Paper

Crash Pulse Characterization for Restraints System Performance Optimization

2015-01-14
2015-26-0152
The vehicle crash signature (here on referred as crash pulse) significantly affects occupant restraints system performance in frontal crash events. Restraints system optimization is usually undertaken in later phase of product development. This leads to sub-optimal configurations and performance, as no opportunity exists to tune vehicle structure and occupant package layouts. In concept phase of development, crash pulse characterization helps to map occupant package environment with available structure crush space and stiffness. The crash pulse slope, peaks, average values at discrete time intervals, can be tuned considering library of restraints parameters. This would help to derive an optimal occupant kinematics and occupant-restraints interaction in crash event. A case study has been explained in this paper to highlight the methodology.
Technical Paper

Interior Trims Design Considerations for Roof Mounted Curtain Airbag

2015-01-14
2015-26-0157
Curtain airbag design offers protection in side crash and it plays a critical role in safety of the vehicle. Curtain airbag provides protection to the occupant in many impact events like frontal offset, side barrier, and side pole and rollover condition. For a vehicle to be safe for any side impact condition, the curtain airbag should deploy and take its final shape before any injury happens to the occupant. During deployment, it is important that the airbag chooses a path of minimum resistance and does not get entangled in interior trims. In reality, the trims always do obstruct the path of airbag deployment in some way. Hence, special care has to be taken care for designing areas surrounding curtain like providing hinges, deflector components etc. to avoid being caught. There are about ten different factors on this deployment is dependent upon. This paper discusses these factors and the effect of the factors on the trims and airbag development.
Technical Paper

Conversion of Diesel Fuel System to CNG Fuel System for Commercial Vehicles

2024-01-16
2024-26-0382
CNG fuel has recently gained popularity in passenger and commercial vehicles due to its lower cost of operation compared to gasoline and diesel. It is also a more environmentally friendly fuel than other fuels. Converting a customer vehicle with a Diesel option to a CNG option is more difficult than building a new CNG vehicle. In this we are outlining the design of CNG fuel systems and the challenges of replacing them during the transition from Diesel to CNG and qualifying the Government Norms for running the vehicle will increase the life as well as make our environment more eco-friendly than diesel vehicles.
Technical Paper

Design Implementation through Computational Fluid Dynamics (CFD) Analysis to Reduce Fuel Filling Time in NGVs

2024-01-16
2024-26-0309
In the past few decades CNG (Compressed Natural Gas) fuel growing as an alternate fuel due to its more economically as compared to Gasoline & Diesel fuels by vehicle running cost in both passenger as well as commercial vehicles, additionally it is more environment friendly & safer fuel with respect to gasoline & diesel. At standard temperature & pressure fuel density of Natural Gas (0.7-0.9 kg/m3) is lower than Gasoline (715-780 kg/m3), Diesel (849~959 kg/m3), therefore CNG fuel require higher storage space as compared to Gasoline & Diesel & also it stores at very high pressure (200-250 bar) to further increase the fuel density 180 kg/m3 (at 200 bar) and for 215 kg/m3 (at 250 bar) in CNG cylinders so that max fuel contains in the cylinders and increase the vehicle running range per fuel filling & reduces its fuel filling frequency at filling stations.
Technical Paper

E-Drive System Selection Criterion for EV Commercial and Passenger Vehicles Segments

2024-01-16
2024-26-0253
Climate change due to global warming are major concerns. Electric vehicles are one of the promising technologies to curb the climate change by reducing CO2 emissions significantly. Electric vehicle component selection is a complex process, which has to fulfil multiple requirements with trade-off between performance & efficiency, efficiency & cost, performance & NVH, packaging & performance etc. In addition, E-drive selection in passenger & commercial vehicle is different due to application difference. Hence, it is a great challenge to select right E-Drive comprising motor, MCU and overall gear ratio to meet EV program constraints and targets. This study focuses on criterion used for selecting an E-Drive system comprising motor, MCU and overall gear ratio for electric vehicles in commercial and passenger vehicle segments.
X