Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Comparison of Promising Sustainable C1-Fuels Methanol, Dimethyl Carbonate, and Methyl Formate in a DISI Single-Cylinder Light Vehicle Gasoline Engine

2021-09-21
2021-01-1204
On the way to a climate-neutral mobility, synthetic fuels with their potential of CO2-neutral production are currently in the focus of internal combustion research. In this study, the C1-fuels methanol (MeOH), dimethyl carbonate (DMC), and methyl formate (MeFo) are tested as pure fuel mixtures and as blend components for gasoline. The study was performed on a single-cylinder engine in two configurations, thermodynamic and optical. As pure C1-fuels, the previously investigated DMC/MeFo mixture is compared with a mixture of MeOH/MeFo. DMC is replaced by MeOH because of its benefits regarding laminar flame speed, ignition limits and production costs. MeOH/MeFo offers favorable particle number (PN) emissions at a cooling water temperature of 40 °C and in high load operating points. However, a slight increase of NOx emissions related to DMC/MeFo was observed. Both mixtures show no sensitivity in PN emissions for rich combustions. This was also verified with help of the optical engine.
Technical Paper

Cold Start Performance of Sustainable Oxygenated Spark Ignition Fuels

2023-09-29
2023-32-0166
The objective of this study was to reduce pollutant emissions during cold start conditions in a spark-ignited direct injection engine, by exploring the potential of oxygenated fuels. With their high oxygen content and lack of direct C-C bonds, they effectively reduce particle number (PN) and NOx emissions under normal conditions. Methanol was chosen due to its wide availability. As methanol is toxic to humans and associated with cold-start issues, a second promising synthetic fuel was selected to be benchmarked against gasoline, comprising 65 vol% of dimethyl carbonate and 35 vol% of methyl formate (C65F5). Currently, there is a lack of detailed investigations on the cold start performance for both oxygenated fuels utilizing today’s injector capabilities. Spray measurements were caried out in a constant volume chamber to assess the spray of C65F35. Reduced fuel temperature increased spray-penetration length and compromised fast vaporization.
X