Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Brake Modulation

2014-04-01
2014-01-0079
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An integral part of this System is an Intervention Strategy that uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. Through this strategy, the driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models. This work develops one means to alter the future vehicle states: modulating the driver's brake commands. This control strategy must be considered in relationship to changes in the throttle commands. Three key elements of this strategy are developed in this work.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Throttle Modulation

2014-04-01
2014-01-0105
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models which is the focus of this work. This work develops one means to alter the future vehicle states: modulating the driver's throttle commands. First, changes to the longitudinal force are translated to changes in engine torque based on the current operating state (torque and speed) of the engine.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

2014-04-01
2014-01-0858
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Journal Article

Tire Model Application and Parameter Identification-A Literature Review

2014-04-01
2014-01-0872
A tire may be one of the most critical and complex components in vehicle dynamics and road loads analyses because it serves as the only interface between the road surface and the vehicle. Extensive research and development activities about vehicle dynamics and tire models have been published in the past decades, but it is still not clear about the applications and parameter identification associated with all of these tire models. In this literature review study, various published tire models used for vehicle dynamics and road loads analyses are compared in terms of their modeling approaches, applications and parameters identification process and methodologies. It is hoped that the summary of this literature review work can help clarify and guide the future research and development direction about tire modeling.
Technical Paper

Optimization of Piston-Ring System for Reducing Lube Oil Consumption by CAE Approach

2020-04-14
2020-01-1339
A CAE-based optimization method is developed for Lube Oil Consumption (LOC) analysis of the piston-ring system. With accurate thermodynamic boundary conditions from 1D engine combustion simulation, piston motion, dynamics of piston ring, and characteristics of oil consumption are simulated using AVL Piston&Ring. The model is validated by comparing with available test data. Good match is achieved. The model is then applied to a diesel engine. The root cause of excessive LOC of the engine has been identified through CAE. The improved understanding has been applied to optimize the piston and piston ring. Engine dyno test, 1200-hour engine durability test, and 45000-kilometer vehicle test have been conducted to validate the optimized design. The experiment results are in good agreement with CAE predictions, and the oil consumption has been improved over the original design.
Journal Article

A New Semi-Empirical Method for Estimating Tire Combined Slip Forces and Moments during Handling Maneuvers

2015-07-01
2015-01-9112
Modeling the tire forces and moments (F&M) generation, during combined slip maneuvers, which involves cornering and braking/driving at the same time, is essential for the predictive vehicle performance analysis. In this study, a new semi-empirical method is introduced to estimate the tire combined slip F&M characteristics based on flat belt testing machine measurement data. This model is intended to be used in the virtual tire design optimization process. Therefore, it should include high accuracy, ease of parameterization, and fast computational time. Regression is used to convert measured F&M into pure slip multi-dimensional interpolant functions modified by weighting functions. Accurate combined slip F&M predictions are created by modifying pure slip F&M with empirically determined shape functions. Transient effects are reproduced using standard relaxation length equations. The model calculates F&M at the center of the contact patch.
Technical Paper

A Two-Layer Soot Model for Hydrocarbon Fuel Combustion

2020-04-14
2020-01-0243
Experimental studies of soot particles showed that the intensity ratio of amorphous and graphite layers measured by Raman spectroscopy correlates to soot oxidation reactivities, which is very important for regeneration of the diesel particulate filters and gasoline particulate filters. This physical mechanism is absent in all soot models. In the present paper, a novel two-layer soot model was proposed that considers the amorphous and graphite layers in the soot particles. The soot model considers soot inception, soot surface growth, soot oxidation by O2 and OH, and soot coagulation. It is assumed that amorphous-type soot forms from fullerene. No soot coagulation is considered in the model between the amorphous- and graphitic-types of soot. Benzene is taken as the soot precursor, which is formed from acetylene. The model was implemented into a commercial CFD software CONVERGE using user defined functions. A diesel engine case was simulated.
Journal Article

A Direct Yaw Control Algorithm for On- and Off-Road Yaw Stability

2011-04-12
2011-01-0183
Models for off-road vehicles, such as farm equipment and military vehicles, require an off-road tire model in order to properly understand their dynamic behavior on off-road driving surfaces. Extensive literature can be found for on-road tire modeling, but not much can be found for off-road tire modeling. This paper presents an off-road tire model that was developed for use in vehicle handling studies. An on-road, dry asphalt tire model was first developed by performing rolling road force and moment testing. Off-road testing was then performed on dirt and gravel driving surfaces to develop scaling factors that explain how the lateral force behavior of the tire will scale from an on-road to an off-road situation. The tire models were used in vehicle simulation software to simulate vehicle behavior on various driving surfaces. The simulated vehicle response was compared to actual maximum speed before sliding vs. turning radius data for the studied vehicle to assess the tire model.
Journal Article

Using Performance Margin and Dynamic Simulation for Location Aware Adaptation of Vehicle Dynamics

2013-04-08
2013-01-0703
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Performance Margin (PM) is defined in this work as the ratio of the required tractive effort to the available tractive effort for the front and rear respectively. This simple definition stems from and incorporates many traditional handling metrics and is robust in its scope of applicability. The PM is implemented in an Intervention Strategy demonstrating its use to avoid situations in which the vehicle exceeds its handling capabilities. Results from a design case study are presented to show the potential efficacy of developing a PM-based control system.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Concept Development

2014-04-01
2014-01-0121
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Location-Aware Adaptive Vehicle Dynamics (LAAVD) System is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. In contrast to current active safety systems, this system is predictive rather than reactive. This work provides the conceptual groundwork for the proposed system. The LAAVD System employs a predictor-corrector method in which the driver's input commands (throttle, brake, steering) and upcoming driving environment (terrain, traffic, weather) are predicted. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's throttle and brake control are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority.
Technical Paper

Exhaust Emission Analysis of a Spark Ignition Engine Operating with Hydrogen Injection in a Pre-Combustion Chamber

2020-01-13
2019-36-0121
Due to the large negative impact of combustion gas emissions on air quality and the more stringent environmental legislation, research on internal combustion engines (ICE) are being developed to reduce emissions of pollutant gases to the atmosphere. One of the research fronts is the use of lean mixtures with the pre-chamber ignition system (PCIS). This system consists of a pre-chamber (PC) connected to the main chamber by one or more interconnecting holes. A spark plug initiates combustion of the mixture present in the pre-chamber, which is propagated as gas jet into the main chamber, igniting the lean mixture present therein. The gas jets have high thermal and kinetic energy, which promote faster combustion duration, making the system less prone to knock and with lower cyclic variability of the IMEP, enabling the lean limit extension. The pre-chamber system can be assisted with a supplementary liquid or gaseous fuel injection, enabling the charge stratification.
Technical Paper

Effects of operation temperature on exhaust emissions in a spark ignition system using pre-chamber stratified system

2020-01-13
2019-36-0130
Atmospheric pollution is the major public health issue in many cities around the world. Internal combustion engines (ICE) and industries are common sources of pollutants that aggravate this situation. Aiming to overcome this problem, increasingly restrictive legislation on combustion pollutant emissions has been formulated and new technologies are being developed to ensure compliance with such restrictions. In this scenario, the lean mixtures appear as a possible alternative, but also bring some inconveniences such as combustion instabilities. Pre-chamber ignition systems (PCIS) enable a more stable combustion process due to high kinetic, thermal and chemical energy of the gases from the pre-chamber (PC), which pass through nozzles and begin the combustion process of the air-fuel mixture contained in the main combustion chamber (MC). However, some challenges still have to be overcome in the development of these systems, one of the main ones being hydrocarbon (HC) emissions.
Technical Paper

Analysis of ethanol spray behavior into a Single Cylinder Optical Research Engine

2020-01-13
2019-36-0223
The work focuses on studying ethanol spray behavior injected directly inside a spark ignited internal combustion engine in the compression stroke. An experimental procedure for measuring spray penetration and spray overall cone angle produced by a multi-hole direct injector was developed by means of computational codes written in Matlab environment for working with images of spray injections and to acquire calculated results in an automatic way. The shadowgraph technique with back continuous illumination associated with a high speed recording image process was used in a single cylinder optical research engine for acquiring images of Brazilian ethanol fuel injected at 120° before the top dead center of compression stroke. The process of spray injections occurred with engine speeds of 1000 rpm, 2000 rpm and 3000 rpm. The results showed that spray penetrations decrease and spray cone angle increase when the engine speed is raised.
Technical Paper

Study on the Effects of Rubber Compounds on Tire Performance on Ice

2020-04-14
2020-01-1228
Mechanical and thermal properties of the rubber compounds of a tire play an important role in the overall performance of the tire when it is in contact with the terrain. Although there are many studies conducted on the properties of the rubber compounds of the tire to improve some of the tire characteristics such as the wear of the tread, there is a limited number of studies that focused on the performance of the tire when it is in contact with ice. This study is a part of a more comprehensive project looking into tire-ice performance and modeling. A significant part of this study is the experimental investigation of the effect of rubber compounds on tire performance in contact with ice. For this, four tires have been selected for testing. Three of them are completely identical in all tire parameters (such as tire dimensions), except for the rubber compounds. Several tests were conducted for the chosen tires in three modes: free rolling, braking, and traction.
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

Applying Principles of Axiomatic Design to a Transdisciplinary Academic Program to Educate Skilled Workers for all Levels of the Automotive Industry

2008-04-14
2008-01-0751
This paper describes the use of axiomatic design to create an academic program which targets the needs of the automotive industry-especially local industry. Creative and innovative engineers and technicians are needed to design, develop, and maintain the vehicles and transportation systems of the future. The design of a new program is presented using axiomatic design to establish multiple levels of customer needs, functional requirements (FRs), associated design parameters (DPs), and resulting design matrices (DMs) that clearly define the program. The curriculum for a two-year automotive technology program is enhanced by partnering with a four-year mechanical engineering program, local and national industries, and local secondary school programs. The paper also discusses potential complexities of the proposed program design and implementation and mitigation strategies.
Technical Paper

Performance Study of a Multifuel Engine Operating Simultaneously with CNG and Ethanol in Various Proportions

2008-10-07
2008-36-0284
The technological development of automotive engines is focused on alternative energy sources and optimized use of conventional fuels. The current flexible engines in Brazil can operate with gasohol and ethanol blends in any proportion, but the flexibility is restricted to liquid fuels. The present investigation consists on the use of electronic injection systems for ethanol and for CNG, allowing the use of these fuels simultaneously. The objective of this work is to determine the best proportion of CNG-ethanol mixture in order to maximize the use of the natural gas, fuel which offers the lowest BSFC on conventional SI engines. The low volumetric efficiency inherent in the use of CNG is compensated by the injection of a small quantity of ethanol. The latent heat of vaporization of the alcohol is used to take heat from the intake air and increase its mass, taking advantage from the high latent heat of vaporization of the ethanol and the low BSFC of the CNG.
Technical Paper

Closed Loop Transaxle Synchronization Control Design

2010-04-12
2010-01-0817
This paper covers the development of a closed loop transaxle synchronization algorithm which was a key deliverable in the control system design for the L3 Enigma, a Battery Dominant Hybrid Electric Vehicle. Background information is provided to help the reader understand the history that lead to this unique solution of the input and output shaft synchronizing that typically takes place in a manual vehicle transmission or transaxle when shifting into a gear from another or into a gear from neutral when at speed. The algorithm stability is discussed as it applies to system stability and how stability impacts the speed at which a shift can take place. Results are simulated in The MathWorks Simulink programming environment and show how traction motor technology can be used to efficiently solve what is often a machine design issue. The vehicle test bed to which this research is applied is a parallel biodiesel hybrid electric vehicle called the Enigma.
Technical Paper

Yaw Stability Control and Emergency Roll Control for Vehicle Rollover Mitigation

2010-10-05
2010-01-1901
In this paper a yaw stability control algorithm along with an emergency roll control strategy have been developed. The yaw stability controller and emergency roll controller were both developed using linear two degree-of-freedom vehicle models. The yaw stability controller is based on Lyapunov stability criteria and uses vehicle lateral acceleration and yaw rate measurements to calculate the corrective yaw moment required to stabilize the vehicle yaw motion. The corrective yaw moment is then applied by means of a differential braking strategy in which one wheel is selected to be braked with appropriate brake torque applied. The emergency roll control strategy is based on a rollover coefficient related to vehicle static stability factor. The emergency roll control strategy utilizes vehicle lateral acceleration measurements to calculate the roll coefficient. If the roll coefficient exceeds some predetermined threshold value the emergency roll control strategy will deploy.
Technical Paper

Development of Auditory Warning Signals for Mitigating Heavy Truck Rear-End Crashes

2010-10-05
2010-01-2019
Rear-end crashes involving heavy trucks occur with sufficient frequency that they are a cause of concern within regulatory agencies. In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks which resulted in 135 fatalities. As part of the Federal Motor Carrier Safety Administration's (FMCSA) goal of reducing the overall number of truck crashes, the Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Researchers also utilized what had been learned in the rear-end crash avoidance work with light vehicles that was conducted by the National Highway Traffic Safety Administration (NHTSA) with Virginia Tech Transportation Institute (VTTI) serving as the prime research organization. ERS crash countermeasures investigated included passive conspicuity markings, visual signals, and auditory signals.
X