Refine Your Search

Topic

Search Results

Technical Paper

Evolution to Lean Manufacturing A Case Study of Boeing of Spokane

1997-06-03
972235
The evolution of a manufacturing organization toward “Lean” manufacturing does not necessarily come cheaply or quickly. It is the experience at Boeing that technology and different visions can dramatically impact the evolutionary process-consuming great amounts of time and resources. The Boeing of Spokane case study, where aircraft floor panels are manufactured1, is but one of several case studies that suggests moving to “Lean” manufacturing is usually done in large steps, not small ones. These initial steps can be costly unless the systems (equipment and workforce) are flexible. Workforce flexibility is dependent on the attitude in the workforce as both touch and support labor move from their comfort zone to try new approaches and job descriptions. The workforce must be properly motivated to make the change. The equipment must also be flexible in adapting to new line layouts, product mixes, and process change or large cost penalties will be incurred.
Technical Paper

Gaugeless Tooling

1998-09-15
982147
At The Boeing Company, the advent of a Determinant Assembly (DA) program and the subsequent production of accurate fuselage subpanels created a need to be able to position subpanels accurately and repeatably during fuselage assembly. The tool engineering organization of The Boeing Company and Advanced Integration Technology, Inc. (AIT) as the prime contractor, are developing and installing automated positioning and alignment systems throughout major 747 fuselage assembly areas which enable DA techniques. The benefits of this assembly approach and this automated precision tooling are flexibility, assembly accuracy, ease of assembly and associated speed, reduced downtime for tool maintenance, and improved shop-floor ergonomics.
Technical Paper

Machine Readable Coding of 777 Wing Fastening Systems Tooling

1998-09-15
982133
This paper presents a detailed overview of the advantages and benefits of using 2-D barcodes, called Data Matrix codes, on Wing Fastening System (WFS) Tooling. This project was conducted on, but not limited to, the 777 Wing Fastening System (GEMCOR) tooling including the drills, fingers, and button dies. This paper will show how using Data Matrix codes to identify tooling will: Eliminate excessive downtime due to the operator using the incorrect tooling for a given tool setup. Reduce the cost associated with panel rework due to the use of incorrect tooling. Reduce the cost associated with excessive tool inventory or last minute ordering to keep up with production needs. Track tool life information for each specific tool. Provide operators with an easy to use tool setup reference document. And provide the factory with the ability to trace panel damage or defects back to the specific machine and exact tooling used.
Technical Paper

EVA Operations Using the Spacelab Logistics Pallet for Hardware Deliveries

2001-07-09
2001-01-2201
There are a large number of space structures, orbital replacement units (ORUs) and other components that must be transported to orbit on a regular basis for the assembly and maintenance of the International Space Station (ISS). Some of this hardware will be ferried on the Spacelab Logistics Pallet (SLP), which has a long and reliable history of space flight successes. The carrier is well used, well qualified, and very adaptable for repeated use in accommodating cargoes of various sizes and shapes. This paper presents an overview of past, present and future hardware design solutions that accommodate EVA operations on the SLP. It further demonstrates how analysis techniques and design considerations have influenced the hardware development, EVA operations, and compliance with human engineering requirements for the SLP.
Technical Paper

An Investigation into the Use of Small, Flexible, Machine Tools to Support the Lean Manufacturing Environment

2001-09-10
2001-01-2566
Drilling fastener holes in large assemblies is traditionally accomplished through the use of large machine tools in order to obtain the accuracies required for the assembled part. Given recent advances of machine design and machine controller compensation, the accuracy of the motion platform can be corrected if the machine is repeatable. This coupled with the use of a vision system or touch probe to compensate for assembly variations, permit the use of smaller, more portable drilling systems. These smaller, more portable machine tools allow for lean manufacturing techniques to be incorporated into build processes, utilize less floor space, and in many cases are less costly than larger, permanent machine tools. This paper examines the feasibility of utilizing a small 5-axis, portable, drilling system for drilling the side panel skins on the F/A-18 E/F forward fuselage.
Technical Paper

F/A-18 E/F Outer Wing Lean Production System

2001-09-10
2001-01-2608
The Boeing F/A-18 E/F Program Wing Team, Lean Organization and Phantom Works have partnered to develop a “state of the art” lean production system for the Outer Wing that represents an evolutionary change in aircraft design and assembly methodology. This project is focused on improving quality, cycle and cost performance through the implementation of lean principles, technology integration and process improvements. This paper will discuss the approach taken to reach the end state objectives and the technologies and processes being developed to support it. Items to be discussed include lean principles and practices, new tooling concepts, improved part assembly techniques, advanced drilling systems, process flow enhancements and part handling/part delivery systems.
Technical Paper

A Preliminary Dynamic Model of Brake Friction Using Pressure and Temperature

2001-10-28
2001-01-3150
Understanding the friction behavior of brake lining materials is fundamental to the ability to predict brake system performance. Of particular interest to the aviation community, where carbon/carbon composite heatsinks are commonly used, is the aircraft response at deceleration onset. There are two performance measures defining brake system performance at braking onset: deceleration onset rate and system response time. The latter is strictly a function of the brake system hydraulics and is not affected by brake lining friction. The former performance measure is a function of both system hydraulics and brake lining friction. Previously to the work herein, carbon heatsink friction was thought to be unpredictable at braking onset. That being the case, a predictive capability for deceleration onset rate was not previously undertaken. This meant that assessment of this performance measure waited until aircraft taxi tests were performed.
Technical Paper

Process Automation Through-Reality Graphics, Kitting, and Automated Panel Protection

1997-09-30
972806
This paper addresses process improvements through reality graphics (RG) aided by automated panel protection (APP) and tool kitting pertaining to automated wing riveting and fastening. This system provides an integrated display of numerical controlled media, automatic tool identification, and image files, combined with automated panel protection. Reality graphics (image files) within the NC program allow the machine operator to access portions of the NC program while attaching a support graphic. This would include safety hazards, unique panel differences, program start, and tool change information. Automated panel protection (APP) analyze process key characteristics, and perishable tool kits, and it monitors the installation of fasteners using multiple cameras mounted in strategic positions, taking real-time images. The APP detects incorrect tooling and possible panel damage, with little or no impact to the operational cycle time of the automated fastening equipment.
Technical Paper

Comparative Test Data Assessment and Simplified Math Modelling for the Vapor Compression Distillation Subsystem

1993-07-01
932194
Space Station Freedom (SSF) has an extended mission duration of 30 years. Trade studies for extended missions of manned spacecraft almost invariably show that large resupply weight and consequent cost savings can be achieved by recovering potable water from wastewater sources. This rationale has led to the present baseline Water Recovery and Management (WRM) system for the Permanently Manned Capability (PMC) phase of SSF. The baseline WRM includes the Vapor Compression Distillation (VCD) subsystem for recovering water from urine. This process serves as a preliminary processing step in achieving potable water from wastewater sources. The basic principle of the VCD is that water is evaporated from urine and then condensed in a zero-gravity device containing an evaporator and a condenser in a rotating drum. The VCD was selected for the baseline WRM following the assessment of test results from competitive urine processing subsystems obtained from the Comparative Test (CT) program.
Technical Paper

Detailed Integration Analysis of the Space Station Life Support System

1994-06-01
941510
A considerable amount of integrated Environmental Control and Life Support System (ECLSS) analysis has been performed and documented for the proposed habitable Space Station. Earlier analytic activities have resulted in highly refined models simulating Temperature and Humidity Control (THC) and Atmosphere Revitalization (AR) hardware. As the mechanisms by which these items affect the Space Station environment have become better understood (along with the effects due to operation of various Man Systems utilities), the next stage of the integrated analysis task has been accomplished; i.e., the simulation of the Atmosphere Control and Supply (ACS) subsystem. The focus of the present paper is upon the ACS function in the overall life support system. Modeling of the ACS is unique among the life support disciplines in that it requires accurate representation of all other ECLSS subsystems that interact with the cabin atmosphere (which has now been achieved) in order to be realistic.
Technical Paper

Dew Point Analysis Developments for Space Station

1994-06-01
941511
This paper reviews the recent G189A computer program developments in the area of humidity control for the U.S. Lab Module in the Space Station. The humidity control function is provided as an indirect or passive function by the Common Cabin Air Assemblies (CCAA) in pressurized elements or modules in the Space Station. The CCAAs provide active cabin temperature control through implementation of a digital/electromechanical control system (i.e., a proportional/integral (PI) control system). A selected cabin temperature can be achieved by this control system as long as the sensible and latent heat loads are within specified limits. In this paper three pertinent analytical cases directed to determining minimum or maximum dew point temperatures are discussed. In these cases the basic sensible heat loads are set at constant values.
Technical Paper

Development of Cold Working Process for 4340M Steel

1995-09-01
952167
A new process has been developed to cold work fastener holes on commercial aircraft flap tracks fabricated of 4340M steel. The process consists of pressing a high strength solid mandrel through a previously prepared hole in a defined manner. This process exhibits high tool life, low overall cost and eliminates the necessity for a final ream operation.
Technical Paper

Noise Implications for VTOL Development

1970-02-01
700286
Noise from the aircraft may prevent the establishment of VTOL ports near population centers-the locations which can provide a significant contribution to mass transportation. To determine how annoying these aircraft may be, a total community annoyance measure (TCAM) has been developed. The TCAM can indicate flight trajectories which minimize the annoyance of the aircraft and the type of aircraft which are acoustically acceptable for operations from a V/STOL port. Low disc loading rotors seem best for operation near terminals while low tip speed propellers are best for cruise.
Technical Paper

Advanced Graphite Composites in the 757/767

1980-09-01
801212
The new 757/767 transports will be the first Boeing Commercial aircraft to commit advanced graphite composite material to initial production. Composite materials, mainly fiberglass in an epoxy matrix, have been used in Boeing military and commercial aircraft in ever increasing amounts for the past twenty (plus) years. Recently, the state-of-the-art of Advanced Composites (graphite and graphite/Kevlar hybrids in an epoxy matrix) progressed to the level that it could be committed to full-scale production. This production commitment resulted in a multi-year, multi-million dollar development program. This was to assure technical and production readiness, and product reliability to meet the stringent performance and safety standards of modern commercial transport.
Technical Paper

Potentials for Advanced Civil Transport Aircraft

1973-02-01
730958
In this lecture, a review of Boeing commercial transport models is presented in chronological order from the B-1 flying boat of 1919 to the 747. The problems of air transport systems including convenience, reliability, safety, comfort, performance, and financial and environmental costs are discussed. The probability of more severe future problems is considered, and suggestions are offered as to technology and system improvements which may need to be pursued if civil air transport systems are to continue to provide fast, convenient transportation with a high level of public acceptance.
Technical Paper

Variable Geometry in a Supersonic Transport Aircraft

1967-02-01
670878
The variable-geometry features of the United States supersonic transport are described. Particular attention is given to the hardware development of those variable-geometry features unique to the supersonic transport. The design, development, and current status of a direct lift control sys tern, the supersonic internal-external compression inlet, and the full-scale wing pivot are described.
Technical Paper

The Design of The U. S. SST for Low Community Noise

1970-02-01
700808
The need for achievement of low community noise levels has had a major influence on the configuration selected for the United States Supersonic Transport (Boeing 2707-300). The selection and development of design features which affect community noise are presented. The configuration has a relatively large span delta wing of moderate sweep and wing loading, with full span leading and trailing edge flaps. An all moving horizontal tail with geared flap is used for trim and control. The use of an unusually far aft center of gravity range is achieved through a fulltime stability augmentation system. All of these design features contribute to low drag at high lift, resulting in high takeoff performance and low levels of thrust required during flight over the community during both takeoff and landing. The resulting airplane has the versatility to use operational techniques which further reduce noise.
Technical Paper

High Altitude Performance of High Bypass Ratio Engines - an Airframe Manufacturer's Point of View

1969-02-01
690652
The traditional method of determining the net thrust of an engine in cruise is explained. It is shown to result in a satisfactory net thrust uncertainty for jet and low bypass ratio engines but to be unsuitable for high bypass ratio engines. A redefinition of net thrust results in a new thrust determination method, called continuity method, which yields acceptable levels of net thrust uncertainty. The new method no longer requires supporting tests in a simulated altitude facility. The question is raised whether in future programs the demonstration of guaranteed cruise performance of an engine should not be carried out in flight tests rather than in an altitude test facility.
Technical Paper

The Pilot and the Flight Management System

1982-02-01
821386
This paper addresses the question of whether automation is being used in the proper applications in aircraft in order to maximize aircraft capabilities and make the most of human performance capacity. It is believed that the aircraft designers, while employing automation, have given due regard to the pilot's role as operator and manager of the aircraft. There does, however, seem to be valid concern for the human element in certain aspects of the air traffic control system.
Technical Paper

A Generic Process for Human Model Analysis

2000-06-06
2000-01-2167
The purpose of this paper is to provide a general process for human model analysis in the digital mock-up environment. It is also intended to provide some basic guidelines for the use and application of human models. This document is intended for anyone who will be performing human model analyses. It is assumed that the person performing the analysis has at least a minimal level of training in the use of the software involved. Note that this document is limited to anthropometric and ergonomic modeling.
X