Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Airplane Flow-Field Measurements

1997-10-01
975535
The utility of airplane flow-field measurements for wind-tunnel testing is reviewed. The methods and equipment developed at Boeing for these measurements are also described. The details of the latest system are presented along with typical results from recent wind-tunnel tests. Using the latest system, flow-field surveys of airplane configurations in industrial low-speed and transonic wind tunnels provide spatial distributions of lift and drag (profile and induced) with good repeatability. In addition, the probe speed and survey region is optimized so that typical full-wake surveys take 20-30 minutes to complete. Final data, displayed as total pressure, velocity vectors, vorticity contours, and distributions of lift and drag (profile and induced) are available approximately 10 minutes after survey completion.
Technical Paper

Application of Temperature Sensitive Paint Technology to Boundary Layer Analysis

1997-10-01
975536
Temperature Sensitive Paint (TSP) technology coupled with the Reynolds number capability of modern wind tunnel test facilities produces data required for continuing development of turbulence models, stability codes, and high performance aerodynamic design. Data in this report include: the variation in transition location with Reynolds number in the boundary layer of a two-dimensional high speed natural laminar flow airfoil (HSNLF) model; additional bypass mechanisms present, such as surface roughness elements; and, shock-boundary layer interaction. Because of the early onset of turbulent flow due to surface roughness elements present in testing, it was found that elements from all these data were necessary for a complete analysis of the boundary layer for the HSNLF model.
Technical Paper

Evolution to Lean Manufacturing A Case Study of Boeing of Spokane

1997-06-03
972235
The evolution of a manufacturing organization toward “Lean” manufacturing does not necessarily come cheaply or quickly. It is the experience at Boeing that technology and different visions can dramatically impact the evolutionary process-consuming great amounts of time and resources. The Boeing of Spokane case study, where aircraft floor panels are manufactured1, is but one of several case studies that suggests moving to “Lean” manufacturing is usually done in large steps, not small ones. These initial steps can be costly unless the systems (equipment and workforce) are flexible. Workforce flexibility is dependent on the attitude in the workforce as both touch and support labor move from their comfort zone to try new approaches and job descriptions. The workforce must be properly motivated to make the change. The equipment must also be flexible in adapting to new line layouts, product mixes, and process change or large cost penalties will be incurred.
Technical Paper

Non-Linear Aeroelastic Predictions for Transport Aircraft

1990-09-01
901852
A loosely coupled method for aeroelastic predictions of aircraft configurations is shown. This method couples an advanced structural analysis method with a CFD aerodynamics code in a modular fashion. This method can use almost any CFD code, so a validation of several such codes is shown to establish regions of validity for each code. Results from potential codes, an Euler code, and a Navier-Stokes code are shown in comparison with experiment. Viscous effects are included in most cases through a coupled boundary-layer solver or a turbulence model as appropriate.
Technical Paper

Machine Readable Coding of 777 Wing Fastening Systems Tooling

1998-09-15
982133
This paper presents a detailed overview of the advantages and benefits of using 2-D barcodes, called Data Matrix codes, on Wing Fastening System (WFS) Tooling. This project was conducted on, but not limited to, the 777 Wing Fastening System (GEMCOR) tooling including the drills, fingers, and button dies. This paper will show how using Data Matrix codes to identify tooling will: Eliminate excessive downtime due to the operator using the incorrect tooling for a given tool setup. Reduce the cost associated with panel rework due to the use of incorrect tooling. Reduce the cost associated with excessive tool inventory or last minute ordering to keep up with production needs. Track tool life information for each specific tool. Provide operators with an easy to use tool setup reference document. And provide the factory with the ability to trace panel damage or defects back to the specific machine and exact tooling used.
Technical Paper

EVA Operations Using the Spacelab Logistics Pallet for Hardware Deliveries

2001-07-09
2001-01-2201
There are a large number of space structures, orbital replacement units (ORUs) and other components that must be transported to orbit on a regular basis for the assembly and maintenance of the International Space Station (ISS). Some of this hardware will be ferried on the Spacelab Logistics Pallet (SLP), which has a long and reliable history of space flight successes. The carrier is well used, well qualified, and very adaptable for repeated use in accommodating cargoes of various sizes and shapes. This paper presents an overview of past, present and future hardware design solutions that accommodate EVA operations on the SLP. It further demonstrates how analysis techniques and design considerations have influenced the hardware development, EVA operations, and compliance with human engineering requirements for the SLP.
Technical Paper

Specification Reform of Avionics Thermal Design Criteria – An F-15 Case Study

2001-07-09
2001-01-2156
Traditional thermal design criteria for avionics equipment are reviewed. Several studies have recently been conducted on the F-15 to assess accuracy of these design criteria. An overview of the study approach and results are presented. Specific topics investigated include: emergency cooling air provisions, cold start-up, hot start-up, normal and transient bay temperatures, and altitude design. The results indicate that many existing design criteria are overly conservative. The study findings suggest that reform of the existing thermal specification process is needed. Many of these reforms are applicable to the general aerospace industry and may result in significant acquisition cost savings as a result of the trend toward usage of commercial electronic parts. The reforms suggested include a new performance based thermal specification approach that increases emphasis on aircraft usage and frequency of occurrence. New transient design criteria are also recommended.
Technical Paper

ETOPS and Service Ready Standards and Processes

1992-10-01
921919
A review of the current extended-range twin-engine operations (ETOPS) and the modifications to the standards and processes that led to its successful operational record has contributed to the feasibility of developing an airplane and preparing an operator for ETOPS at entry into service. The airplane and engine manufacturers and component suppliers have continued to expand on these modified standards and processes in their design, build, test and support programs to meet regulatory authority ETOPS requirements and to facilitate the development of regulatory authority criteria for substantiating ETOPS capability prior to entry into service. Airlines, in conjunction with the manufacturers, have also developed improved processes that meet regulatory authority requirements for preparing an operator to integrate a new airplane into its existing ETOPS programs at entry into service.
Technical Paper

Boeing Research Aerodynamic/Icing Tunnel Capabilities and Calibration

1994-02-01
940114
Flight testing of aircraft under natural icing conditions can be extremely tedious, time consuming, costly, and somewhat risky. However, such testing has been required to demonstrate the effectiveness of anti-icing systems and to certify new aircraft models. To reduce the need for extensive flight testing, Boeing has built a new icing tunnel that has the capability for developing ice shapes and evaluating anti-icing features on full scale sections of critical parts of the aircraft. The icing tunnel was made by modifying an existing 5 ft by 8 ft Boeing Wind Tunnel to add icing capabilities. This paper describes the design specifications, the tunnel capabilities, and the major equipment systems and presents the results of the tunnel calibration relative to the specified requirements.
Technical Paper

Potentials for Advanced Civil Transport Aircraft

1973-02-01
730958
In this lecture, a review of Boeing commercial transport models is presented in chronological order from the B-1 flying boat of 1919 to the 747. The problems of air transport systems including convenience, reliability, safety, comfort, performance, and financial and environmental costs are discussed. The probability of more severe future problems is considered, and suggestions are offered as to technology and system improvements which may need to be pursued if civil air transport systems are to continue to provide fast, convenient transportation with a high level of public acceptance.
Technical Paper

Nozzle Development for the Upper Surface - Blown Jet Flap on the YC-14 Airplane

1974-02-01
740469
A discussion of wing-nozzle configuration development for the application of upper surface blowing to a STOL airplane is presented. The technical challenge is to achieve an integrated system which provides the desired performance for the low speed design conditions and also results in efficient operation during cruise. The resulting configuration is a complete integration of the propulsion system and airplane aerodynamics to achieve efficient operation at all regimes. This paper examines the major design parameters to be considered, describes a number of the configurations tested, and presents static and wind tunnel test results for these configurations. Concluding remarks are made relative to USB nozzle development.
Technical Paper

Composite Structure for Orbiting Space Stations

1964-01-01
640291
An overview of composite structure required for manned orbiting space stations is presented. Following a brief introduction of typical configurations and major subsystems, the major structural areas requiring composite structure and their particular functions and requirements are discussed. A summary weight breakdown is presented to assess the dependence of launch weight on these areas. To illustrate, the primary wall composite structure is presented in detail. The design interplay of boost, pressure, meteoroid, radiation, and thermal control requirements are presented. Resultant composite structure for each remaining major structural area is presented in summary form with a brief description of typical design compromises required.
Technical Paper

Aircraft Noise, Its Source and Reduction

1971-02-01
710308
Since the advent of the turbojet engine, there has been much research by aircraft and engine manufacturers into the source of aircraft noise and its reduction. A review of this research is presented delineating the transition from turbojet engines to turbofan engines to the high by-pass ratio engines being introduced today, and the progress that has been made. Application of the current state-of-the-art to existing airplanes through engine replacement, nacelle retrofit, and flight procedures are also discussed.
Technical Paper

A Generic Process for Human Model Analysis

2000-06-06
2000-01-2167
The purpose of this paper is to provide a general process for human model analysis in the digital mock-up environment. It is also intended to provide some basic guidelines for the use and application of human models. This document is intended for anyone who will be performing human model analyses. It is assumed that the person performing the analysis has at least a minimal level of training in the use of the software involved. Note that this document is limited to anthropometric and ergonomic modeling.
Technical Paper

Payload Attach System for the ISS - Development and Verification for EVA Operations

1999-07-12
1999-01-2037
The process of developing a Payload Attach System (PAS) which will support a wide range of experimental and commercial payloads on the International Space Station (ISS) has experienced an interesting evolution during its design, development, test and evaluation (DDT&E) phase. This evolution has been caused in large measure by requirements intended to insure compatibility of the PAS with the extravehicular activity (EVA) crewmember during nominal and contingency operations in and around the PAS sites. As the design of the ISS transitioned from its Freedom predecessor, the effort to keep costs down by preserving as much of the original Freedom design as possible led to design decisions that challenged engineering thinking.
X