Refine Your Search

Topic

Author

Search Results

Journal Article

Self-Configuring Hybrid Duct System and Attachment Technologies for Environmental Control Systems

2009-11-10
2009-01-3277
Environmental Control Systems (ECS) ducts on airplanes are primarily fabricated from aluminum or thermoset composites, depending on temperature and pressure requirements. It is imperative to fabricate lightweight, cost effective, durable, and repairable systems with minimal tooling. It is also important that the duct systems are easy to assemble even with alignment issues resulting from structural variations, tolerance accumulation, variation from thermal expansion of different materials, and inherent duct stiffness. These requirements create an opportunity and need for a technology that can address all of these issues, while increasing performance at the same time. This report provides a background on current ECS ducting systems.
Journal Article

Estimating Return on Investment for SAVI (a Model-Based Virtual Integration Process)

2011-10-18
2011-01-2576
The System Architecture Virtual Integration (SAVI) program is a collaboration of industry, government, and academic organizations within the Aerospace Vehicle System Institute (AVSI) with the goal of structuring a new integration process that relies on a “single-truth” architectural framework. The SAVI approach of “Integrate, then Build” provides a modern distributed development environment which arrests the propagation of requirements errors through the development life cycle. It does so by capturing design assumptions and shared properties of the system design in an authoritative, annotated architectural model. This reference model provides a common, analyzable framework for confirming that system requirements remain complete, consistent, and correct at all levels of system decomposition. Core concepts of SAVI include extensive use of model-based system engineering tools and use of a “single-truth” reference architectural model.
Technical Paper

A Simulation Evaluation of VFR Heliport Operations in an Obstacle-Rich Environment

1997-10-13
975532
A study was conducted to investigate the impacts of obstacles on pilot performance, workload, and perceptions of safety in a visual flight rule (VFR) obstacle-rich environment (ORE). The study was conducted using a piloted simulation of a single-rotor, multi-engine helicopter operating in a highly detailed urban visual scene database. The database contained multiple obstacle types, with variable obstacle heights and densities. Nine pilots completed the approaches and departures into and out of a heliport located in the center of the generic urban environment. Two flight routes offered unique presentations of terrain and obstacle types. Obstacle height/density and time of day/lighting parameters were systematically manipulated. A multi-dimensional data collection methodology employing the simultaneous collection of direct aircraft state, pilot performance data, pilot physiological data and pilot subjective responses was employed.
Technical Paper

Liquid Water Content and Droplet Size Distribution Mass Fractions for Wind Milling Engine Fan Blade Ice Accretion Analysis

2007-09-24
2007-01-3291
A procedure for calculating the engine inlet diffuser section liquid water content and mass fractions of liquid water content associated with the water droplet size distribution for wind milling engine ice accretion analysis is presented. Critical fuel reserve calculation for extended twin-engine operation requires the determination of drag increase due to ice accretion on inoperative wind milling engine fan blade and guide vane.
Technical Paper

Universal Splice Machine

2007-09-17
2007-01-3782
There is an increasing demand in the aerospace industry for automated machinery that is portable, flexible and light. This paper will focus on a joint project between BROETJE-Automation and Boeing called the Universal Splice Machine (USM). The USM is a portable, flexible and lightweight automated drilling and fastening machine for longitudinal splices. The USM is the first machine of its kind that has the ability not only to drill holes without the need to deburr, (burrless drilling) but also to insert fasteners. The Multi Function End Effector (MFEE) runs on a rail system that is mounted directly on the fuselage using a vacuum cup system. Clamp up is achieved through the use of an advanced electromagnet. A control cart follows along next to the fuselage and includes an Automated Fastener Feeding System. This paper will show how this new advancement has the capabilities to fill gaps in aircraft production that automation has never reached before.
Technical Paper

Development of Portable and Flexible Track Positioning System for Aircraft Manufacturing Processes

2007-09-17
2007-01-3781
The Boeing Company has recently developed a portable positioning system based upon its patented flexible vacuum track technology, in support of its commitment to lean manufacturing techniques. The positioning system, referred to as Mini Flex Track, was initially developed as an inexpensive drilling system that minimizes machine setup time, does not require extensive operator training due to its simple user interface, is general purpose enough to be used in varying airplane applications, and meets strict accuracy requirements for aircraft manufacturing. The system consists of a variable length vacuum track that conforms to a range of contours, a two-axis numerically-controlled positioning carriage that controls machine motion, an additional rail perpendicular to the vacuum rail that provides transverse motion, and an end effector that can perform various tasks.
Technical Paper

Keep the User in Mind: Operational Considerations for Securing Airborne Networks

2007-09-17
2007-01-3785
Security is a serious concern for all Internet users, and all the more so if the implications of security failure can potentially affect safety of flight or the public's perception of air travel. However, when designing networked aircraft and onboard systems, technical security features are only one aspect of the implementation that must be addressed. Given the unique operational, support, and regulatory environment of commercial air transports, careful consideration must also be given to both design and operational requirements in order to develop an aircraft that can be safely operated and maintained within the constraints of the existing infrastructure and personnel available. This paper addresses the unique Operational Considerations for Securing Airborne Networks in commercial air transport aircraft.
Technical Paper

Comparison of Alerted and Visually Acquired Airborne Aircraft in a Complex Air Traffic Environment

1998-04-06
981205
This study was designed to answer what percent of “required” traffic pilots acquire visually using the current “visual acquisition system” of windows, eyes and the Traffic Collision Avoidance System (TCAS). “Required Traffic” was defined as Air Traffic Control (ATC) calls to the research aircraft, TCAS Traffic Alerts and/or TCAS Resolution Advisories. The results of the approximately 40 hours of flight were that the majority of (“required”) traffic was NOT visually acquired (39% visually acquired; 61% not visually acquired). When traffic was identified to the pilots by more than one source, the visual acquisition rate was 58%. For validation purposes, an additional 10 hours of flight observations were made during revenue flights with a major airline. Flight test and airline observations were found to be comparable.
Technical Paper

The 747-400 Dreamlifter - Overview & Mission

2007-01-17
2007-01-3888
The development of new commercial airliners is a very risky proposition. To get it right, airframe manufacturers must balance new technologies and manufacturing methods with global participation and business considerations. The 787 is Boeing's popular new wide body aircraft incorporating state of the art composites design and manufacturing methods. But new technology alone is not enough. A new logistics system was needed to integrate global partners in order to fully benefit from new technologies. The Boeing 747-400 Dreamlifter is a special purpose 747-400 modified to transport Boeing 787 airplane components through various stages of manufacturing.
Technical Paper

Laser Tracker Assisted Aircraft Machining and Assembly

2008-09-16
2008-01-2313
The patented (US 7,277,811 B1) Position Bar provides precise measurement, machining and drilling data for large Engineering and Tooling structure. The Position Bar also supports end item verification seamlessly in the same machining control code. Position Bar measurements are fast, accurate, and repeatable. The true centerline of the machine tool's spindle bearings are being measured to within .002 in a 20 foot cubic volume (20×20×20). True “I”, “J”, & “K” machine tool spindle positions are also precisely measured. Any Gantry or Post Mill Tool can be converted to a Coordinate Measurement Machine (CMM) with this laser tracker controlled Position Bar. Determinant Assembly (D.A.) holes, for fuselage and wing structures are drilled and then measured to within .006 in X, Y, & Z, over a 40 foot distance. Average laser tracker measurement time, per hole, is 2 seconds.
Technical Paper

Commercial Aircraft Applications for Laser Sintered Polyamides

2009-11-10
2009-01-3266
The Selective laser sintering (SLS) process offers unique capabilities for production of complex, thin-walled geometries with internal features, integral attachments and flanges. The benefits of SLS have been realized on a variety of Boeing military platforms for a number of years. However, applications on commercial aircraft have been limited by material flammability requirements. To address this gap, Boeing, in cooperation with Advanced Laser Materials, developed a flame retardant polyamide material that is now commercially available (ALM FR-106). This paper introduces the general advantages of laser sintering as applied to the manufacturing of flight hardware and a description of the development of the flame retardant material in use.
Technical Paper

Development and Implementation of Sol-Gel Coatings for Aerospace Applications

2009-11-10
2009-01-3208
A family of water-based sol-gel coatings has been developed as an environmentally-friendly alternative to traditional aerospace finishing materials and processes. The sol-gel hybrid network is based on a reactive mixture of an organo-functionalized silane with a stabilized zirconium complex. Thin films of the material self-assemble on metal surfaces, resulting in a gradient coating that provides durable adhesion for paints, adhesives, and sealants. Use of the novel coating as a surface pretreatment for the exterior of commercial aircraft has enabled environmental, health, and safety benefits due to elimination of hexavalent chromium, and flight test and early fleet survey data support the laboratory observations that the sol gel coating reduces the occurrence of “rivet rash” adhesion failures. Modifications of the basic inorganic/organic hybrid network have yielded multifunctional coatings with promise for applications such as corrosion control and oxidation protection.
Technical Paper

Modeling of Commercial Airplanes Service Request Process Flows

2009-11-10
2009-01-3199
The repairing of commercial aircraft is a complex task. Service engineers at Boeing's Commercial Aviation Services group specialize in providing crucial repair information and technical support for its many customers. This paper details factors that influence Boeing's response time to service requests and how to improve it. Information pertaining to over 5000 service requests from 2008 and 2009 was collected. From analysis of this data set, important findings were discovered. One major finding is that between 6 and 8 percent of service requests are late because time/date stamps used in reports were created in a different time zone.
Technical Paper

Portable Fastener Delivery and Installation System

2003-09-08
2003-01-2953
The Portable Fastener Delivery System or PFDS, has been developed at the Boeing St. Louis facility to streamline the manual fastener installation process. The PFDS delivers various fasteners, on demand, through a delivery tube to an installation tool used by the operator to install the fasteners in an aircraft assembly. This paper describes the PFDS in its current configuration, along with the associated Huck® International (now Alcoa Fastening Systems) installation tooling, as it is being implemented on the F/A-18E/F Nosebarrel Skinning application. As a “portable” system, the PFDS cart can be rolled to any location on the shop floor it might be needed. The system uses a removable storage cassette to cache many sizes and types of fasteners in the moderate quantities that might be required for a particular assembly task. The operator begins the installation sequence by calling for the particular fastener grip length needed using a wireless control pendant.
Technical Paper

Air Quality Simulation and Assessment (Aqsa) Model

2003-07-07
2003-01-2438
An air quality simulation and assessment (AQSA) model was developed to simulate/evaluate the integrated system performance and obtain air quality characteristics and air contaminants inside the habitable compartments. This model applies both fixed control volume and quasi-steady-state approach for a multi-volume system to assess system performance, operating constraints, and capabilities. The model also integrates a state-of-the-art probabilistic analysis tool, UNIPASS, to compute failure probability due to the uncertainties of variables. In addition, this integrated model also predicts the most likely outcomes for analyzing risks and uncertainties as well as for quantitative toxicological evaluation. This model has been successfully and independently corrected/verified by NASA/JSC to be a very effective, reliable, and accurate tool, while providing savings in both the cost and time of the analysis.
Technical Paper

International Space Station Internal Thermal Control System Lab Module Simulator Build-Up and Validation

2003-07-07
2003-01-2519
As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To predict ITCS performance and address flight issues, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW® programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and it was validated in 2003. Even before complete validation the facility was used to address flight issues, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant.
Technical Paper

International Space Station Internal Thermal Control System Cold Plate/Fluid-Stability Test - Two Year Update

2003-07-07
2003-01-2518
Operation of the Internal Thermal Control System (ITCS) Cold Plate/Fluid-Stability Test Facility commenced on September 5, 2000. The facility was intended to provide advance indication of potential problems on board the International Space Station (ISS) and was designed: To be materially similar to the flight ITCS. To allow for monitoring during operation. To run continuously for three years. During the first two years of operation the conditions of the coolant and components were remarkably stable. During this same period of time, the conditions of the ISS ITCS significantly diverged from the desired state. Due to this divergence, the test facility has not been providing information useful for predicting the flight ITCS condition. Results of the first two years are compared with flight conditions over the same time period, showing the similarities and divergences.
Technical Paper

Development of the Next Generation Gas Trap for the Space Station Internal Thermal Control System

2003-07-07
2003-01-2566
The current dual-membrane gas trap is designed to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). To date it has successfully served its purpose of preventing depriming, overspeed, and shutdown of the ITCS pump. However, contamination in the ITCS coolant has adversely affected the gas venting rate and lifetime of the gas trap, warranting a development effort for a next-generation gas trap. Design goals are to meet or exceed the current requirements to (1) include greater operating ranges and conditions, (2) eliminate reliance on the current hydrophilic tube fabrication process, and (3) increase operational life and tolerance to particulate and microbial growth fouling.
Technical Paper

Operational Experience with the Internal Thermal Control System Dual-Membrane Gas Trap

2003-07-07
2003-01-2565
A dual-membrane gas trap is currently used to remove non-condensed gases (NCG) from the Internal Thermal Control System (ITCS) coolant on board the International Space Station. The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the NCG. The inner hydrophobic fiber allows the trapped NCG to pass through and vent to the ambient atmosphere in the cabin. The purpose of the gas trap is to prevent gas bubbles from causing depriming, overspeed, and shutdown of the ITCS pump, and the current gas trap has performed flawlessly in this regard. However, because of actual operational conditions on-orbit, its gas removal performance and operational lifetime have been affected.
Technical Paper

Selection of an Alternate Biocide for the International Space Station Internal Active Thermal Control System Coolant Loops

2003-07-07
2003-01-2568
The International Space Station (ISS) IATCS (Internal Active Thermal Control System) includes two internal coolant loops that use an aqueous based coolant for heat transfer. A silver salt biocide was used initially as an additive in the coolant formulation to control the growth and proliferation of microorganisms in the coolant loops. Ground-based and in-flight testing has demonstrated that the silver salt is rapidly depleted and not effective as a long-term biocide. Efforts are now underway to select an alternate biocide for the IATCS coolant loop with greatly improved performance. An extensive evaluation of biocides was conducted to select several candidates for test trials.
X