Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Recent Advances in the Technology of Toughening Grain-Refined, High-Strength Steels

1996-08-01
961749
Aluminum nitride and microalloy carbonitrides have been identified as microstructural features that degrade the ductile fracture resistance of tempered martensitic microstructures. A thermal/thermomechanical process has been developed to optimize the toughness of high-strength steels containing any species of grain-refining precipitate that is soluble in austenite, and the process is particularly effective at improving the impact toughness of aluminum-killed EAF steels. The process affects the mode of unstable fracture in tempered martensitic microstructures, such that at constant strength and austenite grain size, substantial improvements are realized in both longitudinal and transverse toughness over relatively broad ranges of sulfur content and tempering temperature.
Technical Paper

The Impact of Some Gear Lubricants on the Surface Durability of Rolling Element Bearings

2006-04-03
2006-01-0357
The additive chemistry of some gear lubricants can have a major impact on the surface durability of rolling element bearings (1). Lubricant formulation has been slanted heavily toward protecting gear concentrated contacts from galling and wear. As such, much of the performance differentiation of lubricants has been dependent on highly accelerated, standardized laboratory tests related to gears. Methods have been proposed to evaluate and quantify a lubricant's performance characteristics as they relate to rolling element bearings (2). Results from several lubricant performance evaluations are presented. The implications of these findings suggest that the detrimental performance effects on rolling element bearings need further fundamental study by the lubricant industry.
Technical Paper

Methods for Assessing the Bearing Surface Durability Performance of Lubricant Formulations

2005-10-24
2005-01-3808
Lubricant formulations and lubricant additives have been demonstrated to have a major impact on the surface durability of rolling element bearings. However, there are very few standard tests used to assess the performance aspects of lubricants as they relate to bearing surface performance. Lubricant formulations have been slanted heavily toward protecting gear concentrated contacts from galling and wear. In addition, much of the performance differentiation of lubricants has been dependent on highly accelerated, standardized laboratory tests related to gears. Methods have been developed for properly evaluating a lubricant's performance characteristics as they relate to bearings. These methods are explained and the corresponding test results are reviewed, to show their effectiveness as lubricant performance evaluation tools.
Technical Paper

Highly Compact Electric Drive for Automotive Applications

2004-10-25
2004-01-3037
The penetration of hybrid or purely electric drivetrain solutions in automotive applications increases continuously, benefiting also from the rapid advancements in the complementary technologies related to the on-board electric energy generation and storage. The automotive community has made a strong commitment to the development of fuel cells into viable products during the next decade, and there are already several hybrid vehicle designs successfully commercialized. The current electric drive configurations are susceptible to significant improvements with respect to weight and envelope dimensions versus torque and power capacity. This paper introduces a compact wheel end power unit concept that integrates advanced motor, package bearing, and gear technologies, and summarizes the development work related to its integration with the specific components of an automotive driveline.
Technical Paper

Increased Life/Noise Reduction of Mechanical Components by Applying Topographical Imagery and Surface Mapping Methodology

2004-11-16
2004-01-3482
The Timken Company performed a detailed study involving topographical imagery and surface mapping. The primary purpose of the study was to develop a direct correlation between surface topography and component durability/life. Through these studies, an optimal surface finish was developed. A production environment was then formed to mass-produce components with this finish on a contact-to-contact component. The results of the study guide us to an increase in durability/life of the Timken product. The paper is divided into three sections. The first section describes the component itself and the testing procedures by which durability/life were determined. The second section describes the analytical work done at the Timken Research facility where topographical imagery and surface mapping were performed. At this time, topographical analysis of several surface finishes paved the way to create an optimal surface texture for increased durability/life.
X