Refine Your Search

Topic

Search Results

Technical Paper

A Field Study of Distance Perception with Large-Radius Convex Rearview Mirrors

1998-02-23
980916
One of the primary reasons that FMVSS 111 currently requires flat rearview mirrors as original equipment on the driver's side of passenger cars is a concern that convex mirrors might reduce safety by causing drivers to overestimate the distances to following vehicles. Several previous studies of the effects of convex rearview mirrors have indicated that they do cause overestimations of distance, but of much lower magnitude than would be expected based on the mirrors' levels of image minification and the resulting visual angles experienced by drivers. Previous studies have investigated mirrors with radiuses of curvature up to 2000 mm. The present empirical study was designed to investigate the effects of mirrors with larger radiuses (up to 8900 mm). Such results are of interest because of the possible use of large radiuses in some aspheric mirror designs, and because of the information they provide about the basic mechanisms by which convex mirrors affect distance perception.
Technical Paper

An Innovative I-Bumper Concept for Improved Crashworthiness of Military and Commercial Vehicles

2008-04-14
2008-01-0512
The greatest demand facing the automotive industry has been to provide safer vehicles with high fuel efficiency at minimum cost. Current automotive vehicle structures have one fundamental handicap: a short crumple zone for crash energy absorption. This leaves limited room for further safety improvement, especially for high-speed crashes. Breakthrough technologies are needed. One potential breakthrough is to use active devices instead of conventional passive devices. An innovative inflatable bumper concept [1], called the “I-bumper,” is being developed by the authors for crashworthiness and safety of military and commercial vehicles. The proposed I-bumper has several active structural components, including a morphing mechanism, a movable bumper, two explosive airbags, and a morphing lattice structure with a locking mechanism that provides desired rigidity and energy absorption capability during a vehicular crash.
Technical Paper

An External Explosive Airbag Model for an Innovative Inflatable Bumper (I-bumper) Concept

2008-04-14
2008-01-0508
In the I-bumper (inflatable bumper) concept [1], two explosive airbags are released just before the main body-to-body crash in order to absorb the kinetic energy of colliding vehicles. The release also actuates other components in the I-bumper, including a movable bumper and an energy absorption morphing lattice structure. A small explosive charge will be used to deploy the airbag. A conventional airbag model will be used to reduce the crash energy in a controlled manner and reduce the peak impact force. An analytic model of the explosive airbag is developed in this paper for the I-bumper system and for its optimal design, while the complete system design (I-bumper) will be discussed in a separate paper. Analytical formulations for an explosive airbag will be developed and major design variables will be identified. These are used to determine the required amount of explosive and predict airbag behavior, as well to predict their impact on the I-bumper system.
Technical Paper

Effects of Impact Velocity on Crush Behavior of Honeycomb Specimens

2004-03-08
2004-01-0245
Effects of impact velocity on the crush behavior of aluminum 5052-H38 honeycomb specimens are investigated by experiments. An impact test machine using pressurized nitrogen was designed to perform dynamic crush tests. A test fixture was designed such that inclined loads can be applied to honeycomb specimens in dynamic crush tests. The results of dynamic crush tests indicate that the effects of impact velocity on the normal and inclined crush strengths are significant. The trends of the inclined crush strengths for specimens with different in-plane orientation angles as functions of impact velocity are very similar to that of the normal crush strength. Experimental results show similar progressive folding mechanisms for honeycomb specimens under pure compressive and inclined loads. Under inclined loads, the inclined stacking patterns were observed. The inclined stacking patterns are due to the asymmetric locations of the horizontal plastic hinge lines.
Technical Paper

Redesigning Workstations Utilizing Motion Modification Algorithm

2003-06-17
2003-01-2195
Workstation design is one of the most essential components of proactive ergonomics, and digital human models have gained increasing popularity in the analysis and design of current and future workstations (Chaffin 2001). Using digital human technology, it is possible to simulate interactions between humans and current or planned workstations, and conduct quantitative ergonomic analyses based on realistic human postures and motions. Motion capture has served as the primary means by which to acquire and visualize human motions in a digital environment. However, motion capture only provides motions for a specific person performing specific tasks. Albeit useful, at best this allows for the analysis of current or mocked-up workstations only. The ability to subsequently modify these motions is required to efficiently evaluate alternative design possibilities and thus improve design layouts.
Technical Paper

First Order Analysis for Automotive Body Structure Design - Part 3: Crashworthiness Analysis Using Beam Elements

2004-03-08
2004-01-1660
We have proposed First Order Analysis (FOA) as a method, which the engineering designers themselves can use easily in an initial design stage. In this paper, we focus on the crashworthiness, and present the method to predict the collapse behavior of the frame member. This method is divided into two parts. Those are (1) collapse analysis under loading conditions of combined axial force and bending moment to the cantilever, and (2) collapse analysis of structural member considering the previously obtained moment - rotation angle relationship using the beam element. In comparison with the results according to the detailed Finite Element Analysis (FEA) model, effectiveness and validity of this method are presented.
Technical Paper

The Roles of Camera-Based Rear Vision Systems and Object-Detection Systems: Inferences from Crash Data

2004-03-08
2004-01-1758
Advances in electronic countermeasures for lane-change crashes, including both camera-based rear vision systems and object-detection systems, have provided more options for meeting driver needs than were previously available with rearview mirrors. To some extent, human factors principles can be used to determine what countermeasures would best meet driver needs. However, it is also important to examine sets of crash data as closely as possible for the information they may provide. We review previous analyses of crash data and attempt to reconcile the implications of these analyses with each other as well as with general human factors principles. We argue that the data seem to indicate that the contribution of blind zones to lane-change crashes is substantial.
Technical Paper

Modeling of Effort Perception in Lifting and Reaching Tasks

2001-06-26
2001-01-2120
Although biomechanics models can predict the stress on the musculoskeletal system, they cannot predict how the muscle load associated with exertion is perceived. The short-term goal of the present study was to model the perception of effort in lifting and reaching tasks. The long-term goal is to determine the correlation between objective and subjective measures of effort and use this information to predict fatigue or the risk of injury. Lifting and reaching tasks were performed in seated and standing situations. A cylindrical object and a box were moved with one hand and two hands, respectively, from a home location to shelves distributed in the space around the subject. The shoulder and torso effort required to perform these tasks were rated on a ten point visual analog scale.
Technical Paper

Modifying Motions for Avoiding Obstacles

2001-06-26
2001-01-2112
Interference between physical objects in the workspace and the moving human body may cause serious problems, including errors in manual operation, physical damage and trauma from the collision, and increased biomechanical stresses due to movement reorganization for avoiding the obstacles. Therefore, a computer algorithm to detect possible collisions and simulate human motions to avoid obstacles will be an important tool for computer-aided ergonomics and optimization of system design in the early stage of a design process. In the present study, we present a method of modifying motions for obstacle avoidance when the object intrudes near the center of the planned motion. We take the motion modification approach, as we believe that for a certain class of obstacle avoidance problems, a person would modify a pre-planned motion that would result in a collision to a new one that is collision-free, as opposed to organizing a totally unique motion pattern.
Technical Paper

Failure Modeling of Spot Welds Under Complex Combined Loading Conditions for Crash Applications

2002-07-09
2002-01-2032
Experiments to obtain the failure loads of spot welds are first reviewed under combined opening and shear loading conditions. A failure criterion is then presented for spot welds under combined opening and shear loading conditions based on the results from the experiments and a lower bound limit load analysis. In order to account for spot welds under more complex loading conditions, another lower bound limit load solution is presented to characterize the failure loads of spot welds under combinations of three forces and three moments. Based on the limit load solution, an engineering failure criterion is proposed with correction factors determined by different spot weld tests. The engineering failure criterion can be used to characterize the failure loads of spot welds with consideration of the effects of sheet thickness, nugget radius and combinations of loads.
Technical Paper

Failure Mechanisms of Sandwich Specimens With Epoxy Foam Cores Under Bending Conditions

2003-03-03
2003-01-0327
Sandwich specimens with DP590 steel face sheets and structural epoxy foam cores are investigated under three-point bending conditions. Experimental results indicate that the maximum loads correspond to extensive cracking in the foam cores. Finite element simulations of the bending tests are also performed to understand the failure mechanisms of the epoxy foams. In these simulations, the plastic behavior of the steel face sheets is modeled by the Mises yield criterion with consideration of plastic strain hardening. A pressure sensitive yield criterion is used to model the plastic behavior of the epoxy foam cores. The epoxy foams are idealized to follow an elastic perfectly plastic behavior. The simulation results indicate that the load-displacement responses of some sandwich specimens agree with the experimental results.
Technical Paper

Benefits of Applying Adaptive Headlighting to the Current U.S. and European Low-Beam Patterns

2002-03-04
2002-01-0524
This analytical study examined the potential benefits of applying two embodiments of adaptive lighting to the U.S. and European low-beam patterns: curve lighting that involves shifting the beam horizontally into the curve, and motorway lighting that involves shifting the beam vertically upward. The curve lighting simulations paired 240-m radius left and right curves with a horizontal shift of 10°, and 80-m radius curves with a horizontal beam shift of 15°. The motorway lighting simulations involved upward aim shifts of 0.25° and 0.5°. For both curve and motorway lighting, changes in both seeing and glare illuminance were considered. Market-weighted model year 2000 U.S. and European beam patterns were used. We conclude that curve lighting, as simulated here, would substantially improve seeing performance on curves for both types of beams. On right curves (but not on left curves) there would be an increase in disability glare for oncoming traffic.
Technical Paper

An Effective Fatigue Driving Stress for Failure Prediction of Spot Welds Under Cyclic Combined Loading Conditions

2003-03-03
2003-01-0696
An effective fatigue driving stress is proposed to predict the failure of spot welds under cyclic combined loading conditions. The effective fatigue driving stress is obtained based on the Mises yield criterion in terms of the resultant forces and moments in a plastic collapse analysis of spot welds under complex combined loading conditions as discussed in Lin et al. [1]. The effective fatigue driving stress can be used to correlate the fatigue data of spot welds with consideration of the effects of the sheet thickness, nugget diameter and loading conditions. Experimental results for coach-peel and lap-shear specimens under cyclic loading conditions are used to evaluate the applicability of the effective fatigue driving stress. The experimental results for spot welds in both coach-peel and lap-shear specimens are correlated very well based on the effective fatigue driving stress.
Technical Paper

Investigation of Airbag-Induced Skin Abrasions

1992-11-01
922510
Static deployments of driver-side airbags into the legs of human subjects were used to investigate the effects of inflator capacity, internal airbag tethering, airbag fabric, and the distance from the module on airbag-induced skin abrasion. Abrasion mechanisms were described by measurements of airbag fabric velocity and target surface pressure. Airbag fabric kinematics resulting in three distinct abrasion patterns were identified. For all cases, abrasions were found to be caused primarily by high-velocity fabric impactrather than scraping associated with lateral fabric motion. Use of higher-capacity inflators increased abrasion severity, and untethered airbags produced more severe abrasions than tethered airbags at distances greater than the length of the tether. Abrasion severity decreased as the distance increased from 225 to 450 mm. Use of a finer-weave airbag fabric in place of a coarser-weave fabric did not decrease the severity of abrasion.
Technical Paper

Child Restraint and Airbag Interaction: Problem and Progress

1993-11-01
933094
The nature of the potentially hazardous interaction between a passenger-side airbag and a rear-facing child restraint is described, as well as the expectations regarding airbag interaction with other types of child restraint systems. Progress made in developing tools to study the problem and test criteria to evaluate possible solutions are summarized, efforts to inform the public are noted, and promising directions for dealing with the problem are addressed. Primary emphasis is placed on the work of the Society of Automotive Engineers (SAE) Child Restraint and Airbag Interaction (CRABI) Task Force and that of its members.
Technical Paper

Infrared Night Vision Systems and Driver Needs

2003-03-03
2003-01-0293
Night vision enhancement systems (NVES), which use infrared (IR) cameras, are designed to supplement the visibility provided by standard headlamps. There are two main NVES systems: active, near infrared (NIR) systems, which require an IR source but give a complete picture of the scene in front of the driver, and passive, far infrared (FIR) systems, which do not need an IR source but only enhance relatively warm objects (such as people and animals). There are three main display alternatives: a head-up display (HUD) superimposed on the direct view of the road, a HUD just above the dashboard but separated from the direct view, and a conventional display somewhere in the dashboard. This paper analyzes what a NVES should do to improve night visibility based on night crash statistics, driver vision and visibility conditions in night driving, driver tasks and behavior, and the options offered by various technological approaches. Potential problems with using NVES are also discussed.
Technical Paper

Crush Strength of Aluminum 5052-H38 Honeycomb Materials under Combined Compressive and Shear Loads

2003-03-03
2003-01-0331
The crush strength of aluminum 5052-H38 honeycomb materials under combined compressive and shear loads are investigated here. The experimental results indicate that both the peak and crush strengths under combined compressive and shear loads are lower than those under pure compressive loads. A yield function is suggested for honeycomb materials under the combined loads based on a phenomenological plasticity theory. The microscopic crush mechanism under the combined loads is also investigated. A microscopic crush model based on the experimental observations is developed. The crush model includes the assumptions of the asymmetric location of horizontal plastic hinge line and the ruptures of aluminum cell walls so that the kinematic requirement can be satisfied. In the calculation of the crush strength, two correction factors due to non-associated plastic flow and different rupture modes are considered.
Technical Paper

Model Update Under Uncertainty and Error Estimation in Shock Applications

2005-05-16
2005-01-2373
Numerical models are used for computing the shock response in many areas of engineering applications. Current analysis methods do not account for uncertainties in the model parameters. In addition, when numerical models are calibrated based on test data neither the uncertainty which is present in the test data nor the uncertainty in the model are taken into account. In this paper an approach for model update under uncertainty and error estimation for shock applications is presented. Fast running models are developed for the model update based on principal component analysis and surrogate models. Once the numerical model has been updated the fast running models are employed for performing probabilistic analyses and estimate the error in the numerical solution. The new developments are applied for computing the shock response of large scale structures, updating the numerical model based on test data, and estimating the error in the predictions.
Technical Paper

Using Vehicle Dynamics Simulation as a Teaching Tool in Automotive Engineering Courses

2005-04-11
2005-01-1795
Some of the best teaching methods are laboratory courses in which students experience application of the principles being presented. Preparing young engineering students for a career in the automotive industry challenges us to provide comparable opportunities to explore the dynamic performance of motor vehicles in a controlled environment. Today we are fortunate to have accurate and easy-to-use software programs making it practical for students to simulate the performance of motor vehicles on “virtual” proving grounds. At the University of Michigan the CarSim® vehicle dynamics simulation program has been introduced as such a tool to augment the learning experience. The software is used in the Automotive Engineering course to supplement homework exercises analyzing acceleration, braking, aerodynamics, and cornering performance. This paper provides an overview of the use of simulation in this setting.
Technical Paper

A Research Design to Collect Data for a Second Generation Eyellipse

1975-02-01
750362
Current automotive design practices related to driver visibility are based on static laboratory studies of mostly straight ahead viewing that were conducted by Meldrum and others beginning in 1962. These individual studies have never been replicated either in the lab or in actual driving situations to determine the validity of their procedures. After a thorough review of the literature related to driver eye location and a statistical analysis of previous static eye location data, an experimental design is proposed to determine dynamic eye location distribution characteristics. This design will provide information on: (a) the relationship of static anthropometric measurements to dynamic eye location; (b) the difference between dynamic on-the-road eye location versus static in-the-lab eye location distributions: (c) the effect of different types of vehicle seating package parameters on eye location; and, (d) a validation of previous static eye location studies.
X