Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Modeling of Phase Change within a Wax Element Thermostat Embedded in an Automotive Cooling System

2017-03-28
2017-01-0131
In an automotive cooling circuit, the wax melting process determines the net and time history of the energy transfer between the engine and its environment. A numerical process that gives insight into the mixing process outside the wax chamber, the wax melting process inside the wax chamber, and the effect on the poppet valve displacement will be advantageous to both the engine and automotive system design. A fully three dimensional, transient, system level simulation of an inlet controlled thermostat inside an automotive cooling circuit is undertaken in this paper. A proprietary CFD algorithm, Simerics-Sys®/PumpLinx®, is used to solve this complex problem. A two-phase model is developed in PumpLinx® to simulate the wax melting process. The hysteresis effect of the wax melting process is also considered in the simulation.
Journal Article

3D CFD Simulation of Hydraulic Test of an Engine Coolant System

2022-03-29
2022-01-0207
Designing an efficient vehicle coolant system depends on meeting target coolant flow rate to different components with minimum energy consumption by coolant pump. The flow resistance across different components and hoses dictates the flow supplied to that branch which can affect the effectiveness of the coolant system. Hydraulic tests are conducted to understand the system design for component flow delivery and pressure drops and assess necessary changes to better distribute the coolant flow from the pump. The current study highlights the ability of a complete 3D Computational Fluid Dynamics (CFD) simulation to effectively mimic a hydraulic test. The coolant circuit modeled in this simulation consists of an engine water-jacket, a thermostat valve, bypass valve, a coolant pump, a radiator, and flow path to certain auxiliary components like turbo charger, rear transmission oil cooler etc.
Journal Article

Numerical Modelling of Coolant Filling and De-aeration in a Battery Electric Vehicle Cooling System

2022-03-29
2022-01-0775
Trapped air bubbles inside coolant systems have adverse effect on the cooling performance. Hence, it is imperative to ensure an effective filling and de-aeration of the coolant system in order to have less air left before the operation of the coolant system. In the present work, a coolant/air multiphase VOF method was utilized using the commercial CFD software SimericsMP+® to study the coolant filling and subsequent de-aeration process in a Battery Electric Vehicle (BEV) cooling system. First, validations of the numerical simulations against experiments were performed for a simplified coolant recirculation system. This system uses a tequila bottle for de-aeration and the validations were performed for different coolant flow rates to examine the de-aeration efficiency. A similar trend of de-aeration was captured between simulation and experimental measurement.
X