Refine Your Search

Topic

Search Results

Technical Paper

Measurement of the Transmission Loss of Thin Panels Using the Two-Load Impedance Tube Method

2021-08-31
2021-01-1059
The two-load method is used to measure the transmission loss of thin panels in two different sized impedance tubes (3.49 cm and 10.16 cm). Samples were initially tested with a clamped boundary condition. This was followed by tests with an elastomer inserted between the tube and tested sample to adjust the boundary condition at the periphery. In all tests performed, the influence of the sample holding method could not be removed from the test. The measured transmission loss was compared to finite element simulation with good agreement for both impedance tubes. Additionally, the effect of a compliant boundary condition along the periphery of the sample was also validated via simulation.
Journal Article

Investigation of the Acoustic Performance of After Treatment Devices

2011-05-17
2011-01-1562
Diesel engines produce harmful exhaust emissions and high exhaust noise levels. One way of mitigating both exhaust emissions and noise is via the use of after treatment devices such as Catalytic Converters (CC), Selective Catalytic Reducers (SCR), Diesel Oxidation Catalysts (DOC), and Diesel Particulate Filters (DPF). The objective of this investigation is to characterize and simulate the acoustic performance of different types of filters so that maximum benefit can be achieved. A number of after treatment device configurations for trucks were selected and measured. A measurement campaign was conducted to characterize the two-port transfer matrix of these devices. The simulation was performed using the two-port theory where the two-port models are limited to the plane wave range in the filter cavity.
Technical Paper

Effects of Seal Viscoelastic Properties on Engine Exterior Cover Noise and Vibration

2007-05-15
2007-01-2285
Engine exterior cover seals are typically made of elastomeric materials and used to seal the interfaces. The design of engine/transmission seals has been traditionally considered from the sealibility aspects. Recently, there have been additional demands that these seals be designed to reduce the vibration transmitted from engine/transmission and to attenuate the radiated noise. To accomplish this goal, the frequency-dependent viscoelastic properties of the seals will have to be considered. This article examines the frequency-dependent viscoelastic properties of some common elastomeric seals. The impacts of these materials on an engine valve cover noise and vibration are particularly investigated. Some design strategies are also discussed to optimize the viscoelastic effects of the elastomeric seals.
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

2007-05-15
2007-01-2180
This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
Technical Paper

Standard Test Method for Cavitation and Erosion-Corrosion Characteristics of Aluminum Pumps with Engine Coolants

2001-03-05
2001-01-1181
The ASTM D 2809 test method, “Standard Test Method For Cavitation Corrosion and Erosion-Corrosion Characteristics of Aluminum Pumps With Engine Coolants” was first published in 19691. The method involves a copper-pipe circuit through which coolant solution, heated to 113°C, is pumped at 103 kPa for 100 hours. The method was modified to change the pump used in the test in 1989. It was updated in 1994 to accommodate a change in the cleaning procedure and was subsequently reapproved by the ASTM D-15 Committee on Engine Coolants in 1999.2 Tests recently conducted on several modern coolants have produced “failing” results, but the coolants are performing well in the field. Further, the repeatability and reproducibility of the method have been questioned. A round-robin series of tests sponsored by the Ford Motor Company revealed significant variations and cause for concern.
Technical Paper

Assessment of Numerical Models and Methods for Noise Radiation Prediction

2001-04-30
2001-01-1520
This paper considers two questions: how does one know when a boundary element mesh is reliable, and what are the advantages and potential pitfalls of various methods for sound radiation prediction. To answer the first question, a mesh checking method is used. With this method velocity boundary conditions are calculated on the nodes of the mesh using a point source or sources placed inside the mesh. A boundary element program is then used to calculate the sound power due to these boundary conditions. The result is compared to the known sound power of the point source or sources. This method has been used to determine the maximum frequency of a mesh, how many CHIEF points to use, etc. The second question is answered by comparing the results of several numerical methods to experimental results for a running diesel engine. The methods examined include the direct and indirect boundary element methods and the Rayleigh integral.
Technical Paper

Effect of Soot Loading on the Thermal Characteristics of Diesel Engine Oils

2001-05-14
2001-01-1714
When compared with new oil, used diesel engine oils exhibited thermal conductivity that increases as the concentration of soot increases. The magnitude of the effect depends on the oil composition, and on the size and dispersion of the soot particles. Although soot in engine oil is generally deleterious to engine performance from the standpoint of wear and deposits, no negative effects were observed on the thermal performance of the oil itself; indeed, even slight positive effects are expected for oils that maintain soot in stable dispersion. Therefore, the thermal challenge for engine oils in diesel engines that use exhaust gas recirculation will be to prevent soot deposition on engine surfaces.
Technical Paper

Performance of a Synthetic Diesel Engine Oil

2002-10-21
2002-01-2769
The impact of viscosity grade and base fluid composition on fuel economy and emission levels has been investigated. A synthetic 5W40 HDDO formulation exhibits promise to address these two needs. The fuel economy and the emission levels were measured at different temperatures in a vehicle dynamometer using Dodge pick-up trucks equipped with Cummins ISB engines. A significant improvement in the fuel economy along with improvements in emissions over a conventional 15W40 product was demonstrated. The oil was also shown to have good wear performance in a 5.9L B engine six cycle cam wear test. In addition, the oil meets all the requirements of the latest API CI-4 specification as well as all OEM specifications.
Technical Paper

Practical Considerations in Reconstructing the Surface Vibration Using Inverse Numerical Acoustics

2003-05-05
2003-01-1456
This paper explores the use of inverse numerical acoustics to reconstruct the surface vibration of a noise source. Inverse numerical acoustics is mainly used for source identification. This approach uses the measured sound pressure at a set of field points and the Helmholtz integral equation to reconstruct the normal surface velocity. The number of sound pressure measurements is considerably less than the number of surface vibration nodes. A brief guideline on choosing the number and location of the field points to provide an acceptable reproduction of the surface vibration is presented. The effect of adding a few measured velocities to improve the accuracy will also be discussed. Other practical considerations such as the shape of the field point mesh and effect of experimental errors on reconstruction accuracy will be presented. Examples will include a diesel engine and a transmission housing.
Technical Paper

Stability Analysis of Free Piston Stirling Engine Power Generation System

1992-08-03
929025
This paper presents a stability analysis of the free-piston Stirling engine and linear alternator power generation system. Since such a system operates under sustained mechanical oscillations, stability of the system is important for proper operation, and as a criterion in selecting the tuning capacitor. The stability criterion of the system is that the rate of change in power dissipation and electric power output is always faster than the rate of the power generated by the engine. The dynamic equations and model of the system are developed in this paper. Frequency domain analysis and Bode plot techniques are utilized in the study. The stable operating frequency region corresponding to different levels of power output are then determined.
Technical Paper

Tradeoff Between Magnet Volume and Tuning Capacitor in a Free Piston Stirling Engine Power Generation System

1992-08-03
929262
This paper presents the criteria in selecting the size of the tuning capacitor, and the cost tradeoff between magnet volume and tuning capacitor in a free piston Stirling engine power generation system. The permissible range of capacitor size corresponding to different magnet volume, in order to prevent magnet demagnetization and stabilize the operation of the system, is determined. Within the permissible range suitable capacitor size may be selected to compensate the inductive load of the system to improve the overall power factor. If the capacitor size is not in the permissible range, there would exists a danger of losing magnet strength, or unstable operation of the engine that would destroy the engine due to unbounded amplitude of piston oscillations. The theory developed is then applied to a practical system, and the cost tradeoff between magnet volume and capacitor is studied.
Technical Paper

Diamond Thin Film Exposure to Simulated Thermionic Reactor Environments

1992-08-03
929303
The high temperature and high neutron flux environment of a thermionic space power reactor presents a challenge in the design of the sheath insulator within a thermionic fuel element. The present alumina insulator design is suspect to degradation due to the neutron flux. The alumina insulator also requires a barrier coating to isolate it from the liquid alkali metal coolant. Although the alumina sheath development is progressing, the alumina insulator remains a potential point of significant performance loss in the thermionic fuel element. The recent successes in depositing polycrystalline diamond film onto cylindrical refractory metal substrates has led to the consideration of diamond as a potentially ideal sheath insulator. Investigations have been conducted into the durability of diamond thin film under exposure to simulated thermionic reactor conditions.
Technical Paper

Four-Phase Switch Reluctance Machines for More Electric Aircraft Power Generation

1995-05-01
951453
The development of the more electric aircraft is in progress. An important part of more electric aircraft concept is the integral starter/generator (ISG) mounted on the shaft of the jet engine. The prime candidate technology for the ISG is a system based on the switched reluctance motor (SRM). Switched reluctance technology has been chosen for this application because the a single failure does not lead to a complete loss of electrical power. In fact, each phase of the SRM is essentially independent of every other phase. Thus it is possible to be able to loose a single phase as a result of a fault and still remain operational with all of the other phases. This characteristic of the SRM has been referred to as fault tolerance and it is a very important characteristic when there is only one generator per engine.
Technical Paper

Prediction of Radiated Noise from Engine Components Using the BEM and the Rayleigh Integral

1997-05-20
971954
This paper examines the feasibility of using the boundary element method (BEM) and the Rayleigh integral to assess the sound radiation from engine components such as oil pans. Two oil pans, one cast aluminum and the other stamped steel, are used in the study. All numerical results are compared to running engine data obtained for each of these oil pans on a Cummins engine. Measured running-engine surface velocity data are used as input to the BEM calculations. The BEM models of the oil pains are baffled in various ways to determine the feasibility of analyzing the sound radiated from the oil pan in isolation of the engine. Two baffling conditions are considered: an infinite baffle in which the edge of the oil pan are attached to an infinite, flat surface; and a closed baffle in which the edge of the oil pan is sealed with a rigid structure. It is shown that either of these methods gives satisfactory results when compared to experiment.
Technical Paper

Identification of AeroAcoustic Noise Sources Using Inverse Boundary Element Method

2005-05-16
2005-01-2497
This paper explores the use of inverse boundary element method to identify aeroacoustic noise sources. In the proposed approach, sound pressure at a few locations out of the flow field is measured, followed by the reconstruction of acoustic particle velocity on the surface where the noise is generated. Using this reconstructed acoustic particle velocity, the acoustic response anywhere in the field, including in the flow field, can be predicted. This approach is advantageous since only a small number of measurement points are needed and can be done outside of the flow field, and a relatively fast computational time. As an example, a prediction of vortex shedding noise from a circular cylinder is presented.
Technical Paper

The Current Development of Nanofluid Research

2005-04-11
2005-01-1929
It has been shown that the addition of a small amount of nanoparticles into a fluid results in anomalous increase in the thermal conductivity of the mixture, and the resulting nanofluid may provide better overall thermal management and better lubrication in many applications, such as heat transfer fluids, engine oils, transmission fluids, gear oils, coolants and other similar fluids and lubricants. The potential benefits of this technology to the automotive and related industries would be more efficient engines, reduced size and weight of the cooling and propulsion systems, lowered operating temperature of the mechanical systems, and increased life of the engine and other mechanical systems. The new mechanisms for this phenomenon of anomalous thermal conductivity increase have been proposed. The heat transfer properties of a series of graphite nanofluids were presented, and the experimental results were compared with the conventional heat transfer theory for pure liquids.
Technical Paper

Using Numerical Acoustics to Diagnose Noise Problems

2005-05-16
2005-01-2324
Numerical acoustics has traditionally been relegated to a prediction only role. However, recent work has shown that numerical acoustics techniques can be used to diagnose noise problems. The starting point for these techniques is the acoustic transfer vector (ATV). First of all, ATV's can be used to conduct contribution analyses which can assess which parts of a machine are the predominant noise sources. As an example, the sound power contribution and radiation efficiency from parts of a running diesel engine are presented in this paper. Additionally, ATV's can be used to reliably reconstruct the vibration on a machine surface. This procedure, commonly called inverse numerical acoustics (INA), utilizes measured sound pressures along with ATV's to reconstruct the surface velocity. The procedure is demonstrated on an engine cover for which the reconstructed vibration had excellent agreement with experimental results.
Technical Paper

On the Prediction of Sound Radiated By Engine Vibration

1985-11-11
852222
An advanced computational method is presented for calculating the sound radiated by vibrating engine of arbitrary shape. The method is based on the numerical evaluation of the Helmholtz Integral Equation. In particular an isoparametric element formulation is introduced in which both the surface geometry and the acoustic variables on the surface of the vibrating body are represented by second order shape functions within the local coordinate system. The formulation includes the case where the surface may have a non-unique normal (e.g. at edges or corners). A general result for the surface and field velocity potential is derived. Test cases involving spherical geometry are given for a pulsating sphere and for an oscillating sphere in which the analytical solutions are known. Examples for bodies with edges and corners are shown for the problems of radiation from a circular cylinder and from a pulsating cube.
Technical Paper

Application of Patch Contribution Analysis to a Motorcycle Engine

2015-06-15
2015-01-2240
The theory of patch (or panel) contribution analysis is first reviewed and then applied to a motorcycle engine on a test stand. The approach is used to predict the sound pressure in the far field and the contribution from different engine components to the sound pressure at a point. First, the engine is divided into a number of patches. The transfer functions between the sound pressure in the field and the volume velocity of each patch were determined by taking advantage of vibro-acoustic reciprocity. An inexpensive monopole source is placed at the receiver point and the sound pressure is measured at the center of each patch. With the engine idling, a p-u probe was used to measure particle velocity and sound intensity simultaneously on each patch. The contribution from each patch to the target point is the multiplication of the transfer function and the volume velocity, which can be calculated from particle velocity or sound intensity. There were two target points considered.
X