Refine Your Search

Topic

Search Results

Technical Paper

Study on Combustion Information Feedback Based on the Combination of Virtual Model and Actual Angular Velocity Measurement

2020-04-14
2020-01-1151
Combustion closed-loop control is now being studied intensively for engineering applications to improve fuel economy. Currently, combustion closed-loop feedback control is usually based on the cylinder pressure signal, which is the most direct and exact signal that reflects engine working process. Although there were some relatively cheap types of in-cylinder pressure sensors, cylinder pressure sensors have not been widely applied because of their high price now. Moreover, the combustion analysis based on cylinder pressure imposes high requirements on the information acquisition capability of the current ECU, such as high acquisition and analog-digital conversion frequency and so on. For developing a low price and feasible technology, a new engine information feedback method based on model calculation and crank angular velocity measurement was proposed. A simplified combustion model was operated in ECU for the real-time calculation of cylinder pressure and combustion parameters.
Technical Paper

Effect of Supercharging on the Intake Flow Characteristics of a Swirl-Supported Engine

2020-04-14
2020-01-0794
Although supercharged system has been widely employed in downsized engines, the effect of supercharging on the intake flow characteristics remains inadequately understood. Therefore, it is worthwhile to investigate intake flow characteristics under high intake pressure. In this study, the supercharged intake flow is studied by experiment using steady flow test bench with supercharged system and transient flow simulation. For the steady flow condition, gas compressibility effect is found to significantly affect the flow coefficient (Cf), as Cf decreases with increasing intake pressure drop, if the compressibility effect is neglected in calculation by the typical evaluation method; while Cf has no significant change if the compressibility effect is included. Compared with the two methods, the deviation of the theoretical intake velocity and the density of the intake flow is the reason for Cf calculation error.
Technical Paper

First-Principles Research on Adsorption of NOx on Pt Cluster and BaO Cluster Supported by γ-Al2O3 (110) Surface

2020-04-14
2020-01-0357
Lean NOx trap (LNT) is a great potential NOx abatement method for lean-burn gasoline engines in consideration of exhaust aftertreatment cost and installation space. NOx firstly is adsorbed on storage sites during the lean-burn period, then reduced to N2 under catalysis of the catalyst sites in the rich-burn phase. There must be a spillover of NOx species between both types of sites. For a better understanding of this spillover process of NOx species between Pt (as the catalytic center) and BaO sites (as storage components in commercial catalyst), this work focused on the vital first step of spillover, the adsorption of NOx on clean substrate surface (γ-Al2O3 (110) surface) and Ba\Pt cluster supported by the surface. Based on first principles software VASP (Vienna Ab-initio Simulation Package), the most stable adsorption structures of NO with Pt3 clusters and (BaO)3 clusters on carrier γ- Al2O3 (110) surface were confirmed and the adsorption energy of these structures were compared.
Technical Paper

Study on the Characteristics of Different Intake Port Structures in Scavenging and Combustion Processes on a Two-Stroke Poppet Valve Diesel Engine

2020-04-14
2020-01-0486
Two-stroke engines have to face the problems of insufficient charge for short intake time and the loss of intake air caused by long valve overlap. In order to promote the power of a two-stroke poppet valve diesel engine, measures are taken to help optimize intake port structure. In this work, the scavenging and combustion processes of three common types of intake ports including horizontal intake port (HIP), combined swirl intake port (CSIP) and reversed tumble intake port (RTIP) were studied and their characteristics are summarized based on three-dimensional simulation. Results show that the RTIP has better performance in scavenging process for larger intake air trapped in the cylinder. Its scavenging efficiency reaches 84.7%, which is 1.7% higher than the HIP and the trapping ratio of the RTIP reaches 72.3% due to less short-circuiting loss, 11.2% higher than the HIP.
Journal Article

Numerical Study on Flash Boiling Spray of Multi-Hole Injector

2017-03-28
2017-01-0841
Flash boiling spray is effective in improving the atomization and evaporation characteristics for gasoline direct injection engines. However, for a multi-hole injector the morphology structure of spray has an obvious change with the fuel temperature increasing or the ambient pressure decreasing, which influences the process of mixture formation and flame propagation. Specially, the spray collapses with both long penetration and a narrow spray angle above certain high superheat degree, which deteriorates air/fuel mixing and hence increases emissions. It is not desired for engine applications while the mechanism of spray structure transformation for multi-hole injector still remains unclear. In the present study, a systematic flash boiling spray model for multi-hole injector is built to investigate the flash boiling spray of multi-hole injector.
Technical Paper

Theoretical and Practical Mechanisms on Lowering Exhaust Emission Levels for Diverse Types of Spark Ignition Engines

2008-06-23
2008-01-1545
The exhaust aftertreatment strategy is one of the most fundamental aspects of spark ignition engine technologies. For various types of engines (e.g., carburetor engine, PFI engine and GDI engine), measuring, purifying, modeling, and control strategies regarding the exhaust aftertreatment systems vary significantly. The primary goal of exhaust aftetreatment systems is to reduce the exhaust emission levels of NOx, HC and CO as well as to lower combustion soot. In general, there is a tradeoff among different engine performance aspects. The exhaust catalytic systems, such as the three way catalyst (TWC) and lean NOx trap (LNT) converters, can be applied together with the development of other engine technologies (e.g., variable valve timing, cold start). With respect to engine soot, some advanced diagnosing techniques are essential to obtain thorough investigation of exhaust emission mechanisms.
Technical Paper

Noise Source Identification of a Diesel Engine Using Inverse Boundary Element Method

2008-04-14
2008-01-0729
The inverse boundary element method (IBEM) is presented to accurately identify the noise sources of a diesel engine in this study. The sound pressures on four near-field planes were measured as inputs for the method. Then, the acoustic model of the full diesel engine was established using the boundary element method, and the acoustic transfer vectors (ATV) between the surface normal velocity and acoustic pressure at field points were calculated over the frequency range of interest. Based on the measured sound pressure and the ATVs, the surface normal velocity distribution of the diesel engine was reconstructed by the IBEM. The reconstructed pressures at two reference field points were compared with the measured ones. Furthermore, the panel contribution of each engine component was analyzed through the reconstructed surface velocity.
Technical Paper

Investigation of Internal Thermal Impact Effect on Motorcycle Catalytic Converter Activity and Microstructure

2003-01-15
2003-32-0059
Chinese new legislations on two wheels and mopeds have been published recently. Depending on the latest exhaust statistic analyses, with the resulting of tighter limits, the application of catalytic converters is becoming a prevalent and a cost-efficient solution for Chinese motorcycle manufacturers. The phenomenon of exhaust temperature changes rapidly during real driving process is well known as one of major destructive factors which have effects upon converter's durability. One 125 cm3 motorcycle is selected as a typical model in this research project. Exhaust temperature of the 125 cm3 motorcycle is measured and recorded during the process of ECE 40 driving cycle. A simulation test system has been set up successfully depending on those temperature data. Conversion ratio of converter sample lost distinctly after 18 hours' thermal impact tests. After further analyses, there were not evident changes in microstructure and substance on the surface of converter.
Technical Paper

A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel

2016-10-17
2016-01-2187
The combustion in low-speed two-stroke marine diesel engines can be characterized as large spatial and temporal scales combustion. One of the most effective measures to reduce NOx emissions is to reduce the local maximum combustion temperature. In the current study, multi-dimensional numerical simulations have been conducted to explore the potential of Miller cycle, high compression ratio coupled with EGR (Exhaust Gas Recirculation) and WEF (water emulsified fuel) to improve the trade-off relationship of NOx-ISFC (indicated specific fuel consumption) in a low-speed two-stroke marine engine. The results show that the EGR ratio could be reduced combined with WEF to meet the Tier III emission regulation. The penalty on fuel consumption with EGR and WEF could be offset by Miller cycle and high geometric compression ratio.
Technical Paper

An Investigation of Abnormal Spray Behaviors of Multi-Hole GDI Injector

2016-04-05
2016-01-0848
The main objective of this paper is to investigate the influence of injection pressures and fuel temperatures on the secondary injection spray evolution at the end of injection from a multi-hole gasoline direct injection (GDI) injector by Mie-scattering technique. The results of this paper show that the overall injection process can be classified into five stages which are injection delay stage, main injection stage, dwell stage, secondary injection stage and ligaments breakup stage respectively. Especially, the secondary injection occurs at the end of main injection, which is abnormal and undesirable spray behaviors. During the injection, big droplets and ligaments are injected through nozzle orifices at low speed. As the injection pressure increases, the phase of the secondary injection advances, and the injection duration decreases. At medium injection pressures (at 6, 8 MPa), more quantity of fuel are injected as ligaments.
Technical Paper

Numerical Analysis of Scavenging Process in a Large Marine Two-Stroke Diesel Engine

2017-10-08
2017-01-2201
For uniflow scavenged two-stroke marine diesel engines, the main function of scavenging process is to replace the burned gas with fresh charge. The end state of scavenging process is integral to the subsequent compression and combustion, thereby affecting the engine’s fuel economy, power output and emissions. In this paper, a complete working cycle of a large marine diesel engine was simulated by using the 3D-CFD software CONVERGE. The model was validated by mesh sensitivity test and experiment data. Based on this calibrated model, the influences of swirl ratio and exhaust valve closing (EVC) timing on the scavenging process were investigated. The parameters evaluating the performance of scavenging process were introduced. The results show that, by adjusting the swirl orientation angle(SOA) from SOA=10° to SOA=30°, different swirl ratios are generated and have obvious differences in flow characteristics and scavenging performance.
Technical Paper

Combustion Characteristics of Wall-Impinging Diesel Fuel Spray under Different Wall Temperatures

2017-10-08
2017-01-2251
The flame structure and combustion characteristics of wall-impinging diesel fuel spray were investigated in a high-temperature high-pressure constant volume combustion vessel. The ambient temperature (Ta) was set to 773 K. The wall temperatures (Tw) were set to 523 K, 673 K and 773 K respectively. Three different injection pressures (Pi) of 600 bar, 1000bar and 1600bar, two ambient pressures (Pa) of 2 MPa and 4 MPa were applied. The flame development process of wall-impinging spray was measured by high-speed photography, which was utilized to quantify the flame luminosity intensity, ignition delay and flame geometrical parameters. The results reveal that, as the wall temperature increases, the flame luminosity intensity increases and the ignition delay decreases.
Technical Paper

Study on Dynamic Characteristics of High-Speed Solenoid Injectors by Means of Contactless Measurement

2017-10-08
2017-01-2313
In-cylinder direct-injected technology provides a flexible and accurate optimization for internal combustion engines to reduce emission and improve fuel efficiency. With increasingly stringent requirements for the emissions of nitrogen oxides (NOx) and CO2, the content of injections in an engine combustion cycle has reached 7 to 9 times in gasoline direct injection (GDI) and the diesel engine with high-pressure common rail (HPCR). Accurate control of both time and quantity of injection is critical for engine performance and emissions, while the dynamic response of injector spray characteristics is a key factor. In this paper, a test bench was built for monitoring the dynamic response of solenoid injectors with high-speed micro-photography and synchronous current collection system. Experimental studies on the dynamic response of GDI and HPCR solenoid injectors were carried out.
Technical Paper

Pressure Drop and Soot Regeneration Characteristics through Hexagonal and Square Cell Diesel Particulate Filters

2017-03-28
2017-01-0979
Although diesel engines have higher output torque, lower fuel consumption, and lower HC pollutant emissions, larger amounts of NOx and PM are emitted, compared with equivalent gasoline engines. The diesel particulate filters (DPF) have proved one of the most promising aftertreatment technologies due to the more stringent particulate matters (PM) regulations. In this study, the computational fluid dynamics (CFD) model of DPF was built by utilizing AVL-Fire software code. The main objective of this paper was to investigate the pressure drop and soot regeneration characteristics of hexagonal and conventional square cell DPFs with various inlet mass flow rates, inlet temperatures, cell densities, soot loads and ash loads. Different cell geometry shapes of DPF were evaluated under various ash distribution types.
Technical Paper

Pressure Drop and Soot Accumulation Characteristics through Diesel Particulate Filters Considering Various Soot and Ash Distribution Types

2017-03-28
2017-01-0959
Although diesel engines offer higher thermal efficiency and lower fuel consumption, larger amounts of Particulate Matters (PM) are emitted in comparison with gasoline engines. The Diesel Particulate Filters (DPF) have proved one of the most promising technologies due to the “particle number” emissions regulations. In this study, the Computational Fluid Dynamics (CFD) multi-channel model of DPF was built properly by utilizing AVL-Fire software code to evaluate the pressure drop and soot accumulation characteristics of DPF. The main objective of this paper was to investigate the effects of soot (capacity and deposit forms) and ash (capacity and distribution factors) interaction on DPF pressure drop and soot accumulation, as well as the effects of DPF boundary conditions (inlet mass flow rate and inlet temperature) on pressure drop.
Technical Paper

Simulating the Flow and Soot Loading in Wall- Flow DPF Using a Two-Dimensional Mesoscopic Model

2018-04-03
2018-01-0955
A two-dimensional mesoscopic approach has been developed to investigate the flow and soot loading in the micro-channels of diesel particulate filter. Soot particle size examined is in the range of 10 nm to 10 μm. The flow is solved by an incompressible lattice Boltzmann model and the transport of solid particle is described in a Lagrangian frame of reference by cell automation probabilistic model. The lattice Boltzmann-cell automation probabilistic model (LB-CA model) is validated with the results of previous studies. The heterogeneous porous wall of DPF is generated by quartet structure generation set (QSGS). The effects of porous wall on the pressure field and velocity field are investigated. The distribution and deposition of soot particles with different sizes in clean channels are simulated. The dynamic evolution of solid boundary in soot particle capture process is investigated and the effects of the deposited soot particles on flow field are evaluated.
Technical Paper

A Simulation Study on Particle Motion in Diesel Particulate Filter Based on Microcosmic Channel Model

2018-04-03
2018-01-0964
As the prime after-treatment device for diesel particulate matter (PM) emission control, Diesel Particulate Filter (DPF) has been widely used for its high particle capture efficiency. In order to study the particle motion and deposition distributions in the DPF inlet channel, a 2-D wall flow DPF microcosmic channel model is built in this paper. The motion trajectories of particles with different sizes are investigated considering the drag force, Brownian motion, gravity and Saffman lift. The effects of the space velocity on particle motion trajectories and deposition distributions inside the inlet channel are evaluated. These results demonstrate that the particle motion trajectories are highly dependent on particle sizes and influenced by the space velocity. The effect of the Brownian motion is obvious for fine particles and suppressed when the space velocity is raised.
Technical Paper

Effects of Late Intake Valve Closing Timing on Thermal Efficiency and Emissions Based on a Two-stage Turbocharger Diesel Engine

2013-04-08
2013-01-0276
This paper investigated the effects of late intake valve closing timing (IVCT) and two-stage turbocharger systems matching based on partially premixed combustion strategy. Tests were performed on a 12-liter L6 heavy-duty engine at loads up to 10 bar BMEP at various speed. IVCT (where IVCT is -80°ATDC, -65°ATDC and -55°ATDC at 1300 rpm, 1600 rpm and 1900 rpm, respectively) lowered the intake and exhaust difference pressure, reducing pumping loss and improved the effective thermal efficiency by 1%, 1.5% and 2% at BMEP of 5 bar at 1300 rpm, 1600 rpm and 1900 rpm. For certain injection timings and EGR rate, it is found that a significant reduction in soot (above 30%) and NOx (above 70%) emissions by means of IVCT. This is due to that IVCT lowered effective compression ratio and temperature during the compression stroke, resulting in a longer ignition delay as the fuel mixed more homogeneous with the charge air ahead of ignition.
Technical Paper

Characteristics of Rail Pressure Fluctuations under Two-Injection Conditions and the Control Strategy Based on ANN

2017-10-08
2017-01-2212
High-pressure common rail (HPCR) fuel injection system is the most widely used fuel system in diesel engines. However, when multiple injection strategy is used, the pressure wave fluctuation is un-avoided due to the opening and closing of the needle valve which will affect the subsequent fuel injection and combustion characteristics. In this paper, several parameters: injection pressure, injection intervals, the main injection pulse widths are investigated on a common rail fuel injection test rig with two injection pulses to explore their effect on the fuel injection rate and fuel quantity. The result showed that the longer injection interval between the pilot and main injections will lead to a rail pressure drop at the beginning of the main injection so that a smaller fuel quantity will be delivered. The main injection pulse width also influences fuel injection rate and the main fuel quantity.
Technical Paper

Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell

2018-09-10
2018-01-1718
Proton exchange membrane (PEM) fuel cell is widely recognized as an outstanding portable power plant and expected to be possibly commercialization in the near future. As is well known, mechanical stresses implemented on the bipolar plates during the assembly procedure should have prominent influences on mass and heat transfer behavior inside the cell, as well as the resultant performance. In this study, an analytical model is proposed to comprehensively investigate the influence of clamping force on the mass transport, electrochemical properties and overall cell output capability of a PEM fuel cell. The results indicate that proper clamping force not only benefits the gas leakage prevention but also increases the contact area between the neighboring components to decrease the contact ohmic resistance.
X