Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

H∞ Control Design of Experimental State-Space Modeling for Vehicle Vibration Suppression

1997-05-20
971949
State-space solutions of H∞ controller have been well developed. Hence to a real structure control design, the first step is to get a state space model of the structure. There are analytical and experimental dynamic modeling methods. As we know, it is hard to obtain an accurate model for a flexible and complex structure by FEM(Finite Element Method). Then the experimental modeling methods are used. In this paper, we use frequency domain modal analysis technique based on system FRF(Frequency Response Function) data and ERA(Eigensystem Realization Algorithm) time domain method based on system impulse response data to establish state-space model in order to design H∞ control law for the purpose of vibration suppression. The robust control implementation is exerted on a testbed (truck cab model device) with three degrees of freedom. The validity of experimental state-space modeling is testified and the obvious vibration control performances are achieved.
Technical Paper

Application of a New Experimental Identification Method to Engine Rigid Body Mount System

1989-05-01
891139
In this paper, a new method which directly identifies characteristic matrices (the mass, damping and stiffness matrices) of the mechanical structure using measured forces input and responses data is proposed. This algorithm is based upon the Maximum Likelihood Estimation, so that the accuracy of identified matrices is stable to experimental errors (random errors). After a theoretical formulation is performed, two examples are provided to illustrate and validate this algorithm. One is analytical example which identifies analytically generated data with random noises, and the other experimentarly identified engine/mount system of automobiles.
X