Refine Your Search

Topic

Search Results

Journal Article

Analysis of Friction Induced Stability, Bifurcation, Chaos, Stick-slip Vibration and their Impacts on Wiping Effect of Automotive Wiper System

2014-04-01
2014-01-0021
A 2 DOF nonlinear dynamic model of the automotive wiper system is established. Complex eigenvalues are calculated based on the complex modal theory, and the system stability as well as its dependence on wiping velocity is analyzed. Bifurcation characteristics of frictional self-excited vibration and stick-slip vibration relative to wiping velocity are studied through numerical analysis. Research of nonlinear vibration characteristics under various wiping velocities is conducted by means of phase trajectories, Poincaré map and frequency spectrum. The pervasive stick-slip vibration during wiping is confirmed, and its temporal and spatial distributions are analyzed by way of time history and contour map. Duty ratio of stick vibration and statistics of scraping residual are introduced as quantitative indexes for wiping effect evaluation. Results indicate that the negative slop of frictional-velocity characteristic is the root cause of system instability.
Journal Article

The Impact of Gear Meshing Nonlinearities on the Vehicle Launch Shudder

2015-04-14
2015-01-0610
During the launch of a car, severe torsional vibration sometimes may occur in its driveline due to somewhat the slipping of the clutch, its intuitive sense for an occupant is the longitudinal vibration of the vehicle, referred to as the launch shudder whose characteristic frequency is from 5 to 25 Hz generally. As the main vibration sources of the driveline and its crucial nonlinear components, the variable stiffness and backlash of the gear meshing are considered, their impacts on the launch shudder are analyzed in this paper. Conformal mapping, finite element method and regression method etc. are the main approaches to calculate the variable meshing stiffness of a gear pair. If this stiffness is get, it can usually be substituted for its approximate analytical expression, just with finite harmonic terms, in Fourier Series form into Ordinary Differential Equations(ODEs) to calculate the vehicle responses with its nonlinearity considered.
Technical Paper

Joint Calibration of Dual LiDARs and Camera Using a Circular Chessboard

2020-04-14
2020-01-0098
Environmental perception is a crucial subsystem in autonomous vehicles. In order to build safe and efficient traffic transportation, several researches have been proposed to build accurate, robust and real-time perception systems. Camera and LiDAR are widely equipped on autonomous self-driving cars and developed with many algorithms in recent years. The fusion system of camera and LiDAR provides state-of the-art methods for environmental perception due to the defects of single vehicular sensor. Extrinsic parameter calibration is able to align the coordinate systems of sensors and has been drawing enormous attention. However, differ from spatial alignment of two sensors’ data, joint calibration of multi-sensors (more than two sensors) should balance the degree of alignment between each two sensors.
Technical Paper

Recent Progress on In-Situ Monitoring and Mechanism Study of Battery Thermal Runaway Process

2020-04-14
2020-01-0861
Lithium-ion batteries (LIBs) with relatively high energy, power density and eco-friendly characteristic are considered as a vital energy source in consumer market of portable electronics and transportation sector especially in electric vehicles (EVs). To meet the higher capacity requirements, the nickel-rich LIBs with higher capacity has been used as the commercial power batteries. However, the battery with higher energy density is more destructive, which could result in thermal runaway accidents and make the battery safety issues become more and more prominent. Thermal runaway of LIBs is one of the key scientific problems in safety issues. Until now, the inducement of thermal runaway process is complicated which perplex researchers and industry a lot. On the one hand, the internal mechanism about thermal runaway should be deeply studied. On the other hand, in-situ monitoring should be developed to supply the mechanism study and early warning.
Technical Paper

Analysis of Vibroacoustic Behaviors and Torque Ripple of SRMs with Different Phases and Poles

2020-04-14
2020-01-0467
In this study, the vibroacoustic characteristics and torque fluctuation of switched reluctance motors (SRMs) with different phases and poles have been analyzed in detail. Also, the common four SRMs, i.e., three-phase 6/4 SRM, four-phase 8/6 SRM, five-phase 10/8 SRM, and six-phase 12/10 SRM, have been selected. First, the spatial-temporal distribution characteristics of radial force in SRMs were revealed by virtue of the analytical derivation, which was validated by the 2D Fourier decomposition based on the finite-element results of radial force. Second, a multiphysics model, which was composed of an electromagnetic field, a mechanical field, and an acoustic field, was established to predict the noise behaviors of SRMs with different phases and poles. Third, the relationship between the torque fluctuation and the phases / poles of SRMs, and the relationship between the noise and the radial force / phases / poles are all analyzed.
Technical Paper

Optimization of the Finite Hybrid Piezoelectric Phononic Crystal Beam for the Low-Frequency Vibration Attenuation

2020-04-14
2020-01-0913
This paper presents a theoretical study of a finite hybrid piezoelectric phononic crystal (PC) beam with shunting circuits. The vibration transmissibility method (TM) is developed for the finite system. The uniform and non-uniform configurations of the resonators, piezoelectric patches and shunting circuits are respectively considered. The properties of the vibration attenuation of the hybrid PC beam undergoing bending vibration are investigated and quantified. It is shown that the proper relaxation of the periodicity of the PC is conducive to forming a broad vibration attenuation region. The hybrid piezoelectric PC combines the purely mechanical PC with the piezoelectric PC and provides more tunable mechanisms for the target band-gap. Taking the structural and circuit parameters into account, the design of experiments (DOE) method and the multi-objective genetic optimization method are employed to improve the vibration attenuation and meet the lightweight demand of the attachments.
Technical Paper

The Effect of Unfine-Tuned Super-Resolution Networks Act on Object Detection

2020-02-24
2020-01-5034
In order to explore approaches for improving object detection accuracy in intelligent vehicle system, we exploit super-resolution techniques. A novel method is proposed to confirm the conjecture whether some popular super-resolution networks used for environmental perception of intelligent vehicles and robots can indeed improve the detection accuracy. COCO dataset which contains images from complex ordinary environment is utilized for the verification experiment, due to it can adequately verify the generalization of each algorithm and the consistency of experimental results. Using two representative object detection networks to produce the detection results, namely Faster R-CNN and YOLOv3, we devise to reduce the impact of resizing operation. The two networks allow us to compare the performance of object detection between using original and super-resolved images. We quantify the effect of each super-resolution techniques as well.
Journal Article

The Influences of the Subframe Flexibility on Handling and Stability Simulation When Using ADAMS/Car

2016-04-05
2016-01-1637
To analyze the K&C (kinematics and compliance), handling and stability performance of the vehicle chassis, some simulations are usually performed using a multi-body dynamics software named ADAMS. This software introduces assumptions that simplify the components of the suspension as rigid bodies. However, these assumptions weaken the accuracy of the simulation of ADAMS. Therefore the use of flexible bodies in K&C and handling and stability simulation in ADAMS is needed to conduct more precise suspension system designs. This paper mainly analyses the influences of the subframe flexibility on handling and stability simulation in ADAMS/Car. Two complete vehicle models are built using ADAMS/Car and Hypermesh. The only difference between the two models is the subframe of the front McPherson suspension. One of the subframes is simplified as a rigid body. The other one is a flexible body built using the MNF file from Hypermesh.
Technical Paper

A Development And Test Environment for Automotive LIN Network

2008-06-23
2008-01-1519
“LIN-BOX” is designed as a development tool for simulation, implementation and test of the automotive LIN (Local Interconnect Network) control devices or entire network. The tool can be used to simulate master and/or slaves around LIN system. The configurable signal processing makes it possible to simulate and test the communication behavior. LIN-BOX monitors the bus traffic in the vehicle. The data on LIN bus can not only be shown on various windows but also written into log files. LIN-BOX has been used by several cases for debugging and validation, the result shows that it is a powerful tool for LIN cluster design, simulation and test.
Technical Paper

Analysis on Fatigue Load and Life about the Frame of a Low-Speed Electric Vehicle Based on Multi-Body Dynamics

2017-03-28
2017-01-0334
The frame of a low-speed electric vehicle was treated as the research object in the paper. The fatigue load of the frame was analyzed with multi-body dynamics method and the fatigue life of frame was analyzed with the nominal stress method. Firstly, the multi-body dynamics model of the vehicle was established and the multi-body dynamics simulation was carried out to simulate the condition where the vehicle used to travel. The fatigue load history of the frame was obtained from the simulation. Secondly, the amplitude-frequency characteristic of the fatigue load was analyzed. The frequency of the fatigue load mainly focused on 0~20HZ from the analysis. Thirdly, the modal of frame was analyzed. As the frequency of the fatigue load was less than the natural frequency of the frame, the quasi-static method was selected to calculate the stress history of the frame. Next, the fatigue life of the frame was analyzed based on S-N curve.
Technical Paper

3D Automotive Millimeter-Wave Radar with Two-Dimensional Electronic Scanning

2017-03-28
2017-01-0047
The radar-based advanced driver assistance systems (ADAS) like autonomous emergency braking (AEB) and forward collision warning (FCW) can reduce accidents, so as to make vehicles, drivers and pedestrians safer. For active safety, automotive millimeter-wave radar is an indispensable role in the automotive environmental sensing system since it can work effectively regardless of the bad weather while the camera fails. One crucial task of the automotive radar is to detect and distinguish some objects close to each other precisely with the increasingly complex of the road condition. Nowadays almost all the automotive radar products work in bidimensional area where just the range and azimuth can be measured. However, sometimes in their field of view it is not easy for them to differentiate some objects, like the car, the manhole covers and the guide board, when they align with each other in vertical direction.
Technical Paper

A Study on Optimization of the Ride Comfort of the Sliding Door Based on Rigid-Flexible Coupling Multi-Body Model

2017-03-28
2017-01-0417
To solve the problem of serious roller wear and improve the smoothness of the sliding door motion process, the rigid-flexible coupling multi-body model of the vehicle sliding door was built in ADAMS. Force boundary conditions of the model were determined to meet the speed requirement of monitoring point and time requirement of door opening-closing process according to the bench test specification. The results of dynamic simulation agreed well with that of test so the practicability and credibility of the model was verified. In the optimization of the ride comfort of the sliding door, two different schemes were proposed. The one was to optimize the position of hinge pivots and the other was to optimize the structural parameters of the middle guide. The impact load of lead roller on middle guide, the curvature of the motion trajectory and angular acceleration of the sliding door centroid were taken as optimization objectives.
Technical Paper

In-Vehicle Driving Posture Reconstruction from 3D Scanning Data Using a 3D Digital Human Modeling Tool

2016-04-05
2016-01-1357
Driving posture study is essential for the evaluation of the occupant packaging. This paper presents a method of reconstructing driver’s postures in a real vehicle using a 3D laser scanner and Human Builder (HB), the digital human modeling tool under CATIA. The scanning data was at first converted into the format readable by CATIA, and then a personalized HB manikin was generated mainly using stature, sitting height and weight. Its pelvis position and joint angles were manually adjusted so as to match the manikin with the scan envelop. If needed, a fine adjustment of some anthropometric dimensions was also preceded. Finally the personalized manikin was put in the vehicle coordinate system, and joint angels and joint positions were extracted for further analysis.
Technical Paper

Hybrid Camera-Radar Vehicle Tracking with Image Perceptual Hash Encoding

2017-09-23
2017-01-1971
For sensing system, the trustworthiness of the variant sensors is the crucial point when dealing with advanced driving assistant system application. In this paper, an approach to a hybrid camera-radar application of vehicle tracking is presented, able to meet the requirement of such demand. Most of the time, different types of commercial sensors available nowadays specialize in different situations, such as the ability of offering a wealth of detailed information about the scene for the camera or the powerful resistance to the severe weather for the millimeter-wave (MMW) radar. The detection and tracking in different sensors are usually independent. Thus, the work here that combines the variant information provided by different sensors is indispensable and worthwhile. For the real-time requirement of merging the measurement of automotive MMW radar in high speed, this paper first proposes a fast vehicle tracking algorithm based on image perceptual hash encoding.
Technical Paper

Optimal Study on the TL of Automotive Door Sealing System Based on the Interior Speech Intelligibility

2018-04-03
2018-01-0672
Wind noise becomes the foremost noise source when a car runs at high speeds. High frequency characteristics of wind noise source and effective performance of seal rubbers for insulating leakage noise make research on the Transmission Loss (TL) of automotive door sealing systems significant. The improvement of TL of automotive door sealing system could effectively decrease the interior noise due to wind noise for vehicles at high speeds. In this study, compression simulation of seal rubbers for an automotive door is performed through a Finite Element (FE) tool firstly. Compressed geometries of the seal rubbers are obtained. Then, based on the final compressed geometries and pre-stress modes of the automotive door seal rubbers, the TL of the whole door sealing system is acquired by hybrid Finite Element - Statistic Energy Analysis (FE-SEA) method. The fluctuating surface pressure on a car body was captured by a Computational Fluid Dynamics (CFD) tool.
Technical Paper

Optimization Design of Rear-Engine Bus Cooling System Based on 1D/3D Coupling Simulation

2018-04-03
2018-01-0771
This study investigated the effects of underhood structure parameters (two types of air ducts, two types of inlet grilles and the opening angle of inlet grilles) on the cooling characteristics of the rear-engine bus; then, the optimum design scheme of the underhood was determined. The air-side resistance load of the cooling system, which is based on fan performance, was selected as the optimization objective. Simulations were created based on a porous media model and standard a k-ε model. The next step was to build a 1D/3D coupling simulation to utilize the advantages of 1D simulation’s fast convergence speed and 3D simulation’s extensive research range. Besides, the use of 1D/3D coupling simulation can efficiently avoid the errors of simulation results which arise from the non-uniform airflow on the cooling module. Results show that the airflow rate of the rectangular air duct increased by 7 to 11percent.
Technical Paper

Development and Evaluation of the Performance Characteristics of a Poly-Disperse Droplet Stream Generator

2013-04-08
2013-01-1617
A specially designed generator has been developed to produce poly-disperse droplet streams: A liquid fuel (n-heptane) is metered to an ultrasonic atomizer to produce droplets, which are then carried and accelerated vertically upwards through a nozzle tube by carrier-air flow. Conditions of the streams at the nozzle exit are modulated by varying the length of nozzle tubes, the fuel and carrier-air flow rate. Optical measurement techniques such as direct photography method, schlieren photography and particle image velocimetry (PIV) are employed to characterize its performance characteristics. Effects of the nozzle tube length, the carrier-air and fuel flow rate are investigated to evaluate the performance of the generator. Longer nozzle tubes provide a better flow guidance for the carrier-air, and tend to generate streams with less and smaller droplets due to the transporting losses.
Technical Paper

A Trust Establishment Mechanism of VANETs based on Fuzzy Analytical Hierarchy Process (FAHP)

2022-03-29
2022-01-0142
As the connectivity of vehicles increases rapidly, more vehicles have the capability to communicate with each other. Because Vehicular Ad-hoc NETworks (VANETs) have the characteristics of solid mobility and decentralization, traditional security strategies such as authentication, firewall, and access control are difficult to play an influential role. As a soft security method, trust management can ensure the security attributes of VANETs. However, the rapid growth of newly encountered nodes of the trust management system also increases the requirements for trust establishing mechanisms. Without a proper trust establishment mechanism, the trust value of the newly encountered nodes will deviate significantly from its actual performance, and the trust management system will suffer from newcomer attacks.
Technical Paper

Comparative Dynamic Analysis of Sliding Door Based on LS-Dyna and ADAMS

2018-04-03
2018-01-0134
Nowadays, the design and development of the sliding door has been gained great attention for its easy egress and ingress. However, most studies on the kinematic and dynamic characteristics of sliding doors were based on the commercial code ADAMS, while the accuracy of flexibility in modal synthesis method and the ability of complex contact condition may not be guaranteed. Thus, a new dynamic analysis method by using the commercial code LS-Dyna was proposed in this paper to take into account the complex deformation and boundary conditions based on the finite element model. The impact force obtained from the Ls-dyna was compared with that from ADAMS when their monitoring points speed and closing time maintained the same during the sliding process. The impact force between the rollers and the guides was employed as evaluation criterion for different methods because of its effect on the roller wear and the moving smoothness in the sliding process.
Technical Paper

Experimental Study on Diesel Spray Characteristics at Different Altitudes

2018-04-03
2018-01-0308
In this study, effects of altitude on free diesel spray morphology, macroscopic spray characteristics and air-fuel mixing process were investigated. The diesel spray visualization experiment using high-speed photography was performed in a constant volume chamber which reproduced the injection diesel-like thermodynamic conditions of a heavy-duty turbocharged diesel engine operating at sea level and 1000 m, 2000 m, 3000 m and 4500 m above sea level. The results showed that the spray morphology became narrower and longer at higher altitude, and small vortex-like structures were observed on the downstream spray periphery. Spray penetration increased and spray angle decreased with increasing altitude. At altitudes of 0 m, 1000 m, 2000 m, 3000 m and 4500 m, the spray penetration at 1.45 ms after start of injection (ASOI) were 79.54 mm, 80.51 mm, 81.49 mm, 83.29 mm and 88.92 mm respectively, and the spray angle were 10.9°, 10.8°, 10.7°, 10.4°and 9.8° respectively.
X