Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Numerical Models for PEMFC Cold Start: A Review

2017-03-28
2017-01-1182
Startup from subzero temperature is one of the major challenges for polymer electrolyte membrane fuel cell (PEMFC) to realize commercialization. Below the freezing point (0°C), water will freeze easily, which blocks the reactant gases into the reaction sites, thus leading to the start failure and material degradation. Therefore, for PEMFC in vehicle application, finding suitable ways to reach successful startup from subfreezing environment is a prerequisite. As it’s difficult and complex for experimental studies to measure the internal quantities, mathematical models are the effective ways to study the detailed transport process and physical phenomenon, which make it possible to achieve detailed prediction of the inner life of the cell. However, review papers only on cold start numerical models are not available. In this study, an extensive review on cold start models is summarized featuring the states and phase changes of water, heat and mass transfer.
Technical Paper

Numerical Study of Gas Purge in Proton Exchange Membrane Fuel Cell

2021-12-31
2021-01-7005
A three-dimensional two-phase single-channel purge mode of proton exchange membrane fuel cell was established, and the steady-state and purge process were simulated. The water distribution in fuel cell after steady-state operation was studied. The changing trend of water content and water volume fraction under co-flow/counter-flow purge conditions was also studied. The results show that the membrane water content and water volume fraction under the ridge position of the fuel cell is more than the flow channel. The non-uniform distribution of membrane water along the direction of the flow channel is significant in co-flow, and the difference can be up to 6. In addition, the effects of different working conditions on purge were studied. It was found that in the purge condition, the water content of the inner membrane of 120s could be basically reduced to below 3.
X