Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Combination of Front Steering and Differential Braking Control for the Path Tracking of Autonomous Vehicle

2016-04-05
2016-01-1627
In order to improve the robustness and stability of autonomous vehicle at high speed, a path tracking approach which combines front steering and differential braking is investigated in this paper. A bicycle model with 3-DOFs is established and a linear time-varying predictive model using front steering as its control input can be derived. Based on model predictive theory, the path tracking issue using linear time-varying model predictive control can be transformed into an online quadratic programming problem with constraints. The expected front steering angle can be obtained from online moving optimization. Then the direct yawing control is adopted to treat two types of differential braking control. The first one investigates steady-state gain of yaw rate in linear 2-DOFs vehicle model, and designs a stable differential braking controller which is based on reference yaw rate.
Technical Paper

Multi-objective Combination Optimization of Automobile Subframe Dynamic Stiffness

2023-04-11
2023-01-0005
Subframe is an important part of automobile chassis, which is connected with body, suspension control arm, powertrain mount, etc. The dynamic stiffness value of the connection point is an important performance index of the subframe, which affects the vibration of the vehicle body. This paper introduces the basic concept and related theory of dynamic stiffness, derives the theoretical formula of dynamic stiffness, and analyzes the frequency response of the key points of the subframe. In view of the fact that the dynamic stiffness of the subframe of a certain vehicle model is not up to the standard at some connection points, the dynamic stiffness CAE simulation analysis is carried out to determine the frequency range of insufficient dynamic stiffness and the connection points that need to be optimized.
Technical Paper

Multi-Objective Optimization Employing Genetic Algorithm for the Torque Converter with Dual-Blade Stator

2015-04-14
2015-01-1119
The traditional automotive torque converter (TC) is equipped with a single-blade stator, at the suction side of which there is an apparent boundary layer separation at stalling condition because of its large impending angle. The separation flow behind the suction side of stator blade is found to create large area of low-energy flow which blocks effective flow passage area, produces more energy losses, decreases impeller torque capacity and transmission efficiency. It is found effective to suppress the boundary layer separation by separating the original single-blade stator into a primary and a secondary part. The gap between them guides high-energy flow at the pressurized side of the primary blade to the suction side of the secondary one, which helps to make boundary layer flow stable. As a result, the impeller torque capacity and torque ratio at low-speed ratio increase tremendously at the cost of little drop of maximum efficiency.
Journal Article

Nonlinear Model Predictive Control of Autonomous Vehicles Considering Dynamic Stability Constraints

2020-04-14
2020-01-1400
Autonomous vehicle performance is increasingly highlighted in many highway driving scenarios, which leads to more priorities to vehicle stability as well as tracking accuracy. In this paper, a nonlinear model predictive controller for autonomous vehicle trajectory tracking is designed and verified through a real-time simulation bench of a virtual test track. The dynamic stability constraints of nonlinear model predictive control (NLMPC) are obtained by a novel quadrilateral stability region criterion instead of the conventional phase plane method using the double-line region. First, a typical lane change scene of overtaking is selected and a new composited trajectory model is proposed as a reference path that combines smoothness of sine wave and comfort of linear functional path. Reference lateral velocity, azimuth angle, yaw rate, and front wheel steering angle are subsequently taken into account.
X