Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Lubricant Technology to Enhance the Durability of Low Friction Performance of Gasoline Engine Oils

1995-10-01
952533
This paper describes lubricant technology to enhance the durability of the low friction performance of gasoline engine oils which were formulated with molybdenum dithiodicarbamates (MoDTCs) as friction modifiers. This paper also describes an evaluation method which consists of three tests: (1) Our in-house rig test to simulate oil deterioration in an engine stand; (2) Quantitative analysis of MoDTC and ZnDTP in oils and; (3) A friction test (SRV). It was found that the low friction performance of fuel economy engine oils deteriorated primarily due to the consumption of MoDTC and ZnDTP. Calcium salicylates had better durability of low friction performance than calcium sulfonates. Furthermore, sulfurized compounds enhanced the durability. Based on these findings, an experimental oil was formulated.
Technical Paper

Anti-Shudder Mechanism of ATF Additives at Slip-Controlled Lock-Up Clutch

1999-10-25
1999-01-3616
The anti-shudder effect of ATF additives and their mechanisms have been investigated. Anti-shudder durability was evaluated using an automatic transmission (AT) on an engine stand under continuously slip-controlled condition. The addition of over-based Ca-sulfonate and friction modifier (FM) remarkably improved the anti-shudder durability of ATF. The surface roughness of the contact area (contact area roughness) of the clutch plates was measured by an electron probe surface roughness analyzer. To evaluate the boundary frictional properties of the adsorbed film formed, the friction coefficient of the clutch plates in the absence of oil was examined after the anti-shudder durability test. It was found that shudder occurrence was strongly correlated with the contact area roughness and the boundary frictional property of the steel plate surface. Large contact area roughness and low boundary friction were preferred to prevent shudder.
X