Refine Your Search

Topic

Author

Search Results

Journal Article

Thermal Flow Analysis of Hybrid Transaxle Surface Using Newly-Developed Heat Flux Measurement Method

2015-04-14
2015-01-1652
This research developed a new measurement technology for thermal analysis of the heat radiation from a hybrid transaxle case surface to the air and improved the heat radiation performance. This heat flux measurement technology provides the method to measure heat flux without wiring of sensors. The method does not have effects of wiring on the temperature field and the flow field unlike the conventional methods. Therefore, multipoint measurement of heat flux on the case surface was enabled, and the distribution of heat flux was quantified. To measure heat flux, thermal resistances made of plastic plates were attached to the case surface and the infrared thermography was used for the temperature measurement. The preliminary examination was performed to confirm the accuracy of the thermal evaluation through heat flux measurement. The oil in the transaxle was heated and the amount of heat radiation from the case surface was measured.
Technical Paper

Automobile Navigation System Using Individual Communication Beacon

1991-10-01
912758
A communication system that uses roadside beacons to broadcast road and traffic information and private messages to vehicles has been developed. The system, called Road/Automobile Communication System (RACS), was the result of a joint research project involving the Public Works Research Institute and 25 private-sector corporations. This paper contains an outline of RACS and of an onboard system developed by TOYOTA and presents the results of field tests conducted in the Tokyo area. The results not only verify the capability of the RACS system and the effectiveness of the in-vehicle equipment but also indicate the potential of such a beacon based network to improve traffic jam and driving safety whilst providing enhanced communication facilities without increasing radio-wave congestion.
Technical Paper

New Plastic Coloring and Forming System

1991-02-01
910363
This paper describes a new plastic coloring and forming system. The system greatly reduces the time and amount of raw materials necessary for color changes, and eliminates the need for manual cleaning during a color change. This system is well-suited for small-lot production with frequent color changes, as well as for automated production systems. The system is being used by auto parts makers, and is practical in a variety of other fields involved with the coloring and forming of plastics.
Journal Article

FAME Blended Diesel Fuel Impacts on Engine/Vehicle Systems

2011-08-30
2011-01-1944
The impact of fatty acid methyl ester (FAME) blended diesel fuel on engine/vehicle systems was comprehensively investigated by vehicle, laboratory and engine tests. In this study, 20% FAME blended fuel (B20) was mainly used and soy bean oil methyl ester (SME) was primarily selected as the FAME. Vehicle testing with long-term fuel storage in vehicle fuel tanks was conducted, considering the most severe conditions in market use. Laboratory and engine tests were also conducted to better understand the vehicle test results. In the vehicle test, engine startability, idle roughness and fuel injection control were evaluated using nine vehicles with plastic or metal fuel tanks. All vehicles showed no problems up to 7 months. While five vehicles with plastic fuel tank did not show any problems throughout the test period up to 18 months, four vehicles with metal fuel tanks experienced malfunctions in engine start or fuel injection control following 8, 13, 13 and 18 months respectively.
Technical Paper

Next Generation High Performance ATF for Slip-Controlled Automatic Transmission

1997-10-01
972927
A slip-controlled lock-up clutch system Is very efficient in improving the fuel economy of automatic transmission (AT) equipped vehicles. However, a special automatic transmission fluid (ATF) which combines an anti-shudder property with high torque capacity is required for this system. In this study, we established additive technology for ATF having a sufficient anti-shudder property and high torque capacity. Based on the technology, new ATF: ATF-T4 was developed. It was confirmed in actual AT tests that ATF-T4 has excellent anti-shudder durability and high torque capacity. Furthermore, ATF-T4 has good SAE No. 2 friction characteristics, oxidation stability, compatibility with materials (elastomers, nylons, etc.) and viscosity at low temperatures.
Technical Paper

Thermal Fatigue Life Prediction for Stainless Steel Exhaust Manifold

1998-02-23
980841
This paper describes the application of a life prediction method for stainless steel exhaust manifolds. Examination of the exhaust manifold cracks indicated that many of the failures could be attributed to out-of-phase thermal fatigue due to compressive strains that occur at high temperatures. Therefore, the plastic strain range was used as the crack initiation criteria. In addition, the comparison of the calculated thermal fatigue stress-strain hysteresis to the experimental hysteresis made it clear that it was essential to use the stress-strain data that was obtained through tensile and compression testing by keeping the test specimens at the maximum temperature of the thermal fatigue test mode. A finite element crack prediction method was developed using the aforementioned material data and good results were obtained.
Technical Paper

A Study on Friction Materials for Brake Squeal Reduction by Nanotechnology

2008-10-12
2008-01-2581
Brake squeal is caused by dynamic instability, which is influenced by its dynamic unstable structure and small disturbance of friction force variation. Recently, FE Analysis of brake squeal is applied for brake design refinements, which is based on dynamic instability theory. As same as the refinement of brake structure is required for brake squeal reduction, the refinement of pad materials is also required for brake effectiveness and brake squeal reduction. It is well known that friction film, which is composed of polymers like phenol formaldehyde resin and so on, influences for friction coefficient. Therefore it is expected that the refinement of polymers in pad materials enable higher brake effectiveness and less brake squeal. In this paper, Molecular Dynamics is applied for the friction force variation of polymers in pad materials. The MD simulation results suggest the reduction method of friction force variation of polymers.
Technical Paper

Fatigue Life Prediction on Rough Road Using Full Vehicle Co-simulation Model with Suspension Control

2010-04-12
2010-01-0952
A full vehicle multi-body dynamic (MBD) model with suspension control system is developed for fatigue life prediction under rough road condition. The model consists of tires, a trimmed body, heavy attached parts, powertrain, suspension, joints, and a driver model, and includes a suspension control system that varies characteristics of the suspension according to the rough road inputs. For tires, a commercial MBD tire model is employed with identifiable parameters. The models are simulated to run on the optically measured road surface of the proving ground. Apart from the trimmed body, several important heavy attached parts are modeled separately, that represent dynamic behavior that induces complex body input load. These parts, along with suspension and powertrain systems are connected to the body using nonlinear elements such as joints, springs, and dampers. Contact conditions are used to represent mount bushing, hood lock, stopper rubber, etc.
Technical Paper

Development of Multi-Layer Plastic Membrane (Bladder Membrane) for Vapor Reducing Fuel Tank

2001-03-05
2001-01-1120
The Vapor Reducing Fuel Tank System (Bladder Tank System) using a flexible plastic membrane (Bladder Membrane) was newly developed in order to reduce the amount of vaporized gasoline in a steel fuel tank. This Bladder Membrane is flexible to expand in proportion to a fuel volume and prevents the permeation of the vaporized gasoline. As a result of our initial study for various materials, we decided to apply a multi-layer plastic material which could achieve both low fuel permeability and good flexibility. This multi-layer material consists of polyethylene(PE) for structural material and polyamide(PA) for low permeability. The modulus of the PE needs to achieve a sufficient flexibility in order to keep the movement of the membrane. While PA material must have not only low fuel permeability but also strong adhesion with the structural material of PE. We also clarify the membrane design to keep a good flexibility and to reduce a strain.
Technical Paper

Flow Noise Reduction upon Quick Opening the Throttle

2001-04-30
2001-01-1429
With the advance in modularization of engine parts in recent years, there is increased use of plastic-made products in air intake systems. Plastic-made intake manifolds (Fig. 1) provide many advantages including reduced weight, reduced cost, and lower intake air temperatures. However, these manifolds have one disadvantage when compared with conventional aluminum-made intake manifolds, in that they transmit more noise because of their lower material density. For example, plastic intake manifolds of early development often generate flow noise when the throttle is opened quickly. With conventional aluminum intake manifolds, this flow noise had generated, but was not heard. This flow noise is presumed to be generated because of high-speed airflow generated when the throttle is opened quickly, but the mechanism of this noise generation has not been clarified.
Technical Paper

Diagnostics Trends for Automotive Electronic Systems

2002-10-21
2002-21-0021
This paper is a study of the On-Board Diagnosis (OBD), a constituent element of the automotive electronic diagnosis system, together with its support functions. With regard to the OBD, we have listed and explained the principles of various diagnostic methods and their advantages and disadvantages. In addition, we have also commented on design factors and concepts. As to the support functions, nameiy diagnostics communication and diagnostic scan tool, drive recorder, and also IT, we have made recommendations on their future development in view of the functional division of roles with respect to the OBD in light of their respective characteristics.
Technical Paper

The Technology to Produce Thermoplastic Elastomer Based on Waste Rubber

2003-03-03
2003-01-0941
A new rubber recycling technology to produce a thermoplastic elastomer (TPE) based on ethylene-propylene-diene rubber (EPDM) waste was developed. In this technology, the developed process consists of devulcanization of EPDM waste, blending of the devulcanized EPDM and polypropylene (PP), and dynamic vulcanization of the rubber component. All three are set up in as a continuous process in which the Recycled Rubber based Thermoplastic Elastomer (which is indicated as “RR-TPE” henceforth) is finally obtained. The RR-TPE exhibits elasticity and mechanical properties similar to those of commercial Thermoplastic olefins (TPO). These properties may be due to a suitably formed phase structure. Automotive parts are being developed and are going to be produced with the RR-TPE manufactured by this new technology. This technology will contribute to both protecting the environment and saving resources.
Technical Paper

Nylon 6-Clay Hybrid - Synthesis, Properties and Application to Automotive Timing Belt Cover

1991-02-01
910584
ϵ-caprolactam was polymerized in the interlayer space of montmorillonite, the clay mineral yielding a nylon-clay hybrid (NCH). X-ray and TEM measurements revealed that each template of the silicate, which was 1 nm thick, was dispersed in the nylon 6 matrix, and that the interlayer distance of clay increased continuously from 1.2 nm for the unintercalated material to 21.4 nm for the intercalated material. Thus, NCH is a polymer-based molecular composite or a nano-composite. NCH contains 1-15 vol% of monolayer clay. Injection-molded NCH showed excellent mechanical properties compared with nylon 6 in terms of tensile strength, tensile modulus and heat resistance. The tensile modulus of NCH was twice that of Nylon 6, and the heat distortion temperature increased from 65°C for nylon 6 to 145°C for the NCH containing only 1.6 vol% of a clay mineral. It was found that such excellent properties of an NCH system was due to the strong ionic interaction between nylon 6 and the silicate layer.
Technical Paper

Development of Super Olefin Bumper for Automobiles

1992-02-01
920525
The EMT (Elastomer Modified Thermoplastics) currently used in passenger car bumper fascia are limited in retaining low CLTE (Coefficient of Linear Thermal Expansion) and impact resistance, although they are highly rigid, which allows a reduction in weight, and also have high flowability during injection molding. We have developed a new bumper material called “Super Olefin Polymer” using a unique theory based upon a reversal of the current concept. The current polymer design concept of the EMT material is to compound and disperse the EPR (Ethylene Propylene Rubber) into the resin matrix such as polypropylene. We reversed the domain and the matrix, and treated the resin phase as the filler and the elastomer phase as the matrix.
Technical Paper

Experimental Study on Viscosity-Shear Characteristics of Lubricating Oils

1995-02-01
951029
The viscosity of automotive lubricants containing polymers decreases temporarily in the oil films of sliding parts with the increase in shear rate. This decrease sometimes causes surface damages such as bearing seizure and gear pitting. This paper describes the effect of polymers and base oils on viscosity under high shear rate conditions. The viscometer was newly developed to evaluate the viscosity at high shear rates. Shear rate can vary between 105 sec-1 and 106 sec-1. By using the viscometer, the effects of various factors such as polymer type, molecular weight, polar group and concentration on shear viscosity were investigated. The effects of polymer solubility and molecular weight distribution of base oils were also investigated.
Technical Paper

Super Olefin Polymer for Material Consolidation of Automotive Interior Plastic Parts

1996-02-01
960296
A new automotive interior component material, TSOP-5 has been developed by refining the technology utilized to develop TSOP-1, the high modulus and high flow material for bumper covers. This new interior component material has excellent molding capability (MI=30dg/min.) yet still maintains high impact resistance which enables the material to be used in areas such as the dash board as well as trim covers requiring to meet the FMVSS 214, the new side impact regulation or the FMVSS 201, the new soft upper trim regulation.
Technical Paper

Development of Painted Super Olefin Bumper Recycling Technology

1996-02-01
960283
In automotive plastic parts, bumpers are rather bigger parts and easy to be detached. And there is growing need to develop bumpers recycling technology. Now we developed the recycling technology for waste painted Super Olefin Polymer (SOP) bumpers from car dealers in production. This technology consists of discriminating from the repair in market by dyeing, and of melting SOP resin and hydrolysis of the paint film which are carried out simultaneously in a twin-screw extruder Reactive Processing System.
Technical Paper

Development of Sleeve Clinching Method and Making Practicable

1997-02-24
970372
We developed a fastening method to reduce noise levels and fastening work loads. The development was based on research into improved tools and fasteners. This was done in preparation for an increase in elderly worker and female worker population in the Automobile Assembly Shop. The principle of this method is to form female threads inside a straight sleeve by clinching the sleeve around a threaded bolt. We achieved improvements in component material clinching force and a durability for loosening torque compared to conventional bolt and nut methods.
Technical Paper

Life Cycle Inventory Study of Automotive Fuel Tank

1997-04-08
971177
As a means of effectively incorporating the concept of “life cycle” for reducing the environmental impact of the automobile, we carried out a life cycle inventory study on a part-by-part basis. The targets of our study are the fuel tanks that are made of different materials and manufacturing processes. One is made of steel, and the other is made of plastic, both perform identical functions. Our evaluation study encompasses the period from the manufacturing of the main materials until the disposal of the tanks. The evaluation items consist of the amount of energy consumed and the emissions (of CO2, NOx, SOx, and PM) that are released into the atmosphere. The results show that the plastic tank poses a greater burden in terms of the amount of energy consumed and the CO2 and NOx emitted.
Technical Paper

Development to Standardize PC System for the Automotive Industry

1984-02-01
840205
Recently, programmable controllers have been utilized for new equipment on production lines in the automobile industry. However, operators who must use these devices to carry out various operations face difficulties understanding the different methods for programming, ets. of these devices, and for handling the various types of peripheral equipment. In accordance with the increase in the number of PCs, CAD/CAM systems have become requisite for achieving high efficiency in sequence control design. However, poor PC standards prevent their development. In this paper, the development of PC systems, as well as methods for the elimination of problems with standardization, are described. The methods of standardization concern the methods of transmission between the PC and the peripheral equipment, the construction of peripheral equipment and the structure of data in the ladder diagram.
X