Refine Your Search

Topic

Author

Search Results

Journal Article

Development of Clean Diesel NOx After-treatment System with Sulfur Trap Catalyst

2010-04-12
2010-01-0303
Diesel engines with relatively good fuel economy are known as an effective means of reducing CO₂ emissions. It is expected that diesel engines will continue to expand as efforts to slow global warming are intensified. Diesel particulate and NOx reduction system (DPNR), which was first developed in 2003 for introduction in the Japanese and European markets, shows high purification performance which can meet more stringent regulations in the future. However, it is poisoned by sulfur components in exhaust gas derived from fuel and lubricant. We then developed the sulfur trap DPNR with a sulfur trap catalyst that traps sulfur components in the exhaust gas. High purification performance could be achieved with a small amount of platinum group metal (PGM) due to prevention of sulfur poisoning and thermal deterioration.
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Technical Paper

Development of Magnesium Steering Wheel

1991-02-01
910549
This paper describes the development of one-piece die cast magnesium steering wheel frame for a steering wheel incorporating an air bag system. The light weight magnesium frame was designed to have proper stiffness, strength and characteristics of energy absorption. Magnesium alloys with various aluminum contents were tested, and AM60B alloy was selected because of its favorable properties of strength and elongation. New manufacturing techniques, for example, a vacuum hot chamber die casting system and a surface defect inspection system were developed in order to produce high quality castings. The characteristics of energy absorption were evaluated in the laboratory and on actual vehicle crash test, and the results were satisfactory. The magnesium steering wheel frame is about 45% (550g) lighter than the steel one. It has been in production in Toyota passenger cars with driver side air bags.
Journal Article

Development of an On-Board PM Sensor for the OBD System Based on an Electrochemical Polarization

2011-08-30
2011-01-2059
An on-board particulate matter (PM) sensor, consisting of a gas-permeable electrochemical cell with a porous yttria-stabilized zirconia solid oxide electrolyte, was developed to assist the on-board diagnostics (OBD) system of a vehicle. Exhaust is pumped from the anode side to the cathode side and PM deposited on the anode is instantly oxidized by the catalytic effects of the metal component of the electrode at temperatures higher than 350°C. The PM oxidation reaction occurs at the three-phase boundary between the anode, electrolyte and gas phase, and causes a slight change in the bulk average oxygen concentration, which produces electrochemical polarization by the difference in oxygen partial pressures between the anode and cathode. The developed PM sensor has a detection limit of 2 mg/m₃, at which level will enable PM detection in the OBD system according to the EURO VI regulation.
Technical Paper

Thermal Fatigue Life Prediction for Stainless Steel Exhaust Manifold

1998-02-23
980841
This paper describes the application of a life prediction method for stainless steel exhaust manifolds. Examination of the exhaust manifold cracks indicated that many of the failures could be attributed to out-of-phase thermal fatigue due to compressive strains that occur at high temperatures. Therefore, the plastic strain range was used as the crack initiation criteria. In addition, the comparison of the calculated thermal fatigue stress-strain hysteresis to the experimental hysteresis made it clear that it was essential to use the stress-strain data that was obtained through tensile and compression testing by keeping the test specimens at the maximum temperature of the thermal fatigue test mode. A finite element crack prediction method was developed using the aforementioned material data and good results were obtained.
Technical Paper

A Study of Additive Effects on ATF Frictional Properties Using New Test Methods

1990-10-01
902150
A new test machine has been developed which can evaluate vibration due to stick-slip using an actual full-scale clutch pack. Using this machine, a static breakaway friction coefficient measurement test method and a stick-slip test method have been established. Both methods have been shown to provide results which correlate with the results from both a full-scale assembly test and a vehicle shudder evaluation test. The evaluation of the frictional properties of commercial oils using these test methods showed that the static breakaway friction coefficient and the stick-slip properties have generally contradictory performance to each other for automatic transmission. The study of the frictional properties for typical additives and an analysis of the surface of the steel plates with ESCA (Electron Spectroscopy for Chemical Analysis) showed that the frictional properties are significantly affected by the additives adsorbed on the clutch plate sliding surface.
Technical Paper

Development of alloy cast iron for press die

2000-06-12
2000-05-0194
This paper describes the development of alloy cast iron that can be used for the cutting edges of the trimming die of a press die. Usually, a block of tool steel or steel casting is inserted at the cutting edge of the trimming die of a press die. However, we unified the structure part and the cutting-edge part of a press die with alloy cast iron. As it can''t bear as the cutting edge in this state, the cutting edge is processed by flame-hardening. After the flame- hardening, we developed the alloy cast iron so that enough hardness may be obtained by natural air cooling. Thereby, the machining of the installation seat of the cutting edge decreased and the expense of dies has been reduced.
Technical Paper

Study of High Efficiency Zero-Emission Argon Circulated Hydrogen Engine

2010-04-12
2010-01-0581
The potential of high efficiency zero-emission engines fueled by hydrogen, which is regarded as a promising form of energy for the future, is being researched. The argon circulated hydrogen engine [ 1 ] is one system theoretically capable of achieving both high efficiency and zero emissions, and its feasibility for use in vehicles has been studied. Specifically, tests were performed to verify the following issues. It was examined whether stable hydrogen combustion could be achieved under an atmosphere of argon and oxygen, which has a high specific heat ratio, and whether the substantial thermal efficiency improvement effect of the argon working gas could be achieved. An argon circulation system was also studied whereby steam, which is the combustion product of the hydrogen and oxygen emitted from the engine, is separated by condensation to enable the remaining argon to be re-used.
Technical Paper

Development of Multi-Layer Plastic Membrane (Bladder Membrane) for Vapor Reducing Fuel Tank

2001-03-05
2001-01-1120
The Vapor Reducing Fuel Tank System (Bladder Tank System) using a flexible plastic membrane (Bladder Membrane) was newly developed in order to reduce the amount of vaporized gasoline in a steel fuel tank. This Bladder Membrane is flexible to expand in proportion to a fuel volume and prevents the permeation of the vaporized gasoline. As a result of our initial study for various materials, we decided to apply a multi-layer plastic material which could achieve both low fuel permeability and good flexibility. This multi-layer material consists of polyethylene(PE) for structural material and polyamide(PA) for low permeability. The modulus of the PE needs to achieve a sufficient flexibility in order to keep the movement of the membrane. While PA material must have not only low fuel permeability but also strong adhesion with the structural material of PE. We also clarify the membrane design to keep a good flexibility and to reduce a strain.
Technical Paper

Development of Planar Oxygen Sensor

2001-03-05
2001-01-0228
In preparation for compliance with California's SULEV standard and Euro STAGE 4 standard, which will take effect in 2002 and 2005, respectively, we have developed a laminated planar oxygen sensor. The developed sensor has the following characteristics: high thermal conductivity and superior dielectric characteristic, due to direct joining of the heater element alumina substrate and the sensor element zirconia electrolyte; low heat stress at temperature rise, due to optimized heater design; superior sensor protection from water droplets, and improved sensor response, due to optimized arrangement of intake holes in the sensor cover. With these characteristics, the developed oxygen sensor can be activated in 10 seconds after cold start. This report describes the technologies we used to develop the early-activation oxygen sensor.
Technical Paper

Modeling and Numerical Analysis of NOx Storage-Reduction Catalysts - On the Two Effects of Rich-Spike Duration

2001-03-05
2001-01-1297
Two effects of rich-spike duration on NOx-storing have been analyzed. The first one, that NOx-storing speed decreases as rich-spike duration increases, is explained as the influence of NOx diffusion in wash-coat layer, which is quantified by a simple mathematical expression for NOx-storing rate. The second one, a peculiar behavior of NOx-storing in appearance of the outlet NOx concentration, is clarified: Heat produced directly or indirectly (via oxygen storage in ceria) by rich-spike warms up the downstream part, which releases excess NOx at the raised temperature. Contributions of the oxygen storage and the carbonate of NOx-storage material are also discussed.
Technical Paper

Development of Non-Lead-Added Free-Cutting Steel for Automobile Parts

2004-03-08
2004-01-1527
A new, free-cutting steel, hereafter referred to as “non-lead-added free-cutting steel”, has been developed with the intention of replacing currently applied lead containing free cutting steel. The ultimate goal of this project is to provide a new lead-free steel grade that will contribute to the removal of environmentally harmful substances from automobile parts. In this project, we have targeted the development of a material that would demonstrate levels of machinability and other mechanical properties equivalent to those of the conventional free-cutting steel to which sulfur (S), lead (Pb) and calcium (Ca) or combinations, thereof have been added. The fine dispersion of sulfide, modified by adding Mg and Ca, is most effective in enhancing the chip breakability that would otherwise deteriorate due to the absence of lead. The practical application of the non-lead-added free-cutting steel has rendered the goal of total removal of lead from special steel products highly obtainable.
Technical Paper

Development of Three-way Catalyst Using Composite Alumina-Ceria-Zirconia

2003-03-03
2003-01-0811
To realize the high performance of the three-way catalyst, this development focused on the heat resistance of the CeO2-ZrO2 solid solution (CZ) that possesses the oxygen storage capacity (OSC). A new concept of the OSC compound with high durability is proposed. We devised a new method of inhibiting the coagulation of the primary CZ particles by placing diffusion barrier layers made of alumina among the primary CZ particles. This material is called “ACZ”. The specific surface area of ACZ was larger than that of the conventional CZ after durability test. The sintering of Pt on the ACZ-added catalyst is inhibited and the crystal size of CZ in the ACZ-added catalyst is smaller than that in the CZ-added catalyst. The OSC and the light off temperature of the ACZ-added catalyst are improved.
Technical Paper

Nylon 6-Clay Hybrid - Synthesis, Properties and Application to Automotive Timing Belt Cover

1991-02-01
910584
ϵ-caprolactam was polymerized in the interlayer space of montmorillonite, the clay mineral yielding a nylon-clay hybrid (NCH). X-ray and TEM measurements revealed that each template of the silicate, which was 1 nm thick, was dispersed in the nylon 6 matrix, and that the interlayer distance of clay increased continuously from 1.2 nm for the unintercalated material to 21.4 nm for the intercalated material. Thus, NCH is a polymer-based molecular composite or a nano-composite. NCH contains 1-15 vol% of monolayer clay. Injection-molded NCH showed excellent mechanical properties compared with nylon 6 in terms of tensile strength, tensile modulus and heat resistance. The tensile modulus of NCH was twice that of Nylon 6, and the heat distortion temperature increased from 65°C for nylon 6 to 145°C for the NCH containing only 1.6 vol% of a clay mineral. It was found that such excellent properties of an NCH system was due to the strong ionic interaction between nylon 6 and the silicate layer.
Technical Paper

Development of Super Olefin Bumper for Automobiles

1992-02-01
920525
The EMT (Elastomer Modified Thermoplastics) currently used in passenger car bumper fascia are limited in retaining low CLTE (Coefficient of Linear Thermal Expansion) and impact resistance, although they are highly rigid, which allows a reduction in weight, and also have high flowability during injection molding. We have developed a new bumper material called “Super Olefin Polymer” using a unique theory based upon a reversal of the current concept. The current polymer design concept of the EMT material is to compound and disperse the EPR (Ethylene Propylene Rubber) into the resin matrix such as polypropylene. We reversed the domain and the matrix, and treated the resin phase as the filler and the elastomer phase as the matrix.
Technical Paper

The New 2.4-Liter Slant Engine, 2TZ-FE, for the Toyota Previa

1990-09-01
901717
This paper describes a new 2.4-liter 16-valve in-line four-cylinder engine, 2TZ-FE, which has been mounted horizontally on a new minivan, the TOYOTA PREVIA. This engine has the TOYOTA original compact 4-valve DOHC system (scissors gear mechanism), and TOYOTA's newest technologies, such as 75 deg. slant cylinder and Separated accessory Drive System. The compact configuration reduces the height of this engine to only 44Omm (17.3-inches). Engine location is under the flat floor on the midship rear-wheel-drive vehicle and allows the PREVIA to have a spacious cabin with walkthrough. Its high performance, 103kW at 500Orpm and 209Nm at 4000rpm, has been achieved through updated technologies, such as: Knock Controll System (KCS), well studied intake system and exhaust manifold which is made of stainless steel double pipe. At the same time, high reliability and quietness have been achieved for the 2TZ-FE by TOYOTA's updated technologies.
Technical Paper

Development of Ductile Cast Iron Flywheel Integrated with Hot Form-Rolled Gear

1998-02-01
980568
New ductile cast iron flywheel integrated with gear and its manufacturing process were developed to reduce the manufacturing steps and cost compared with conventional flywheel around which a steel ring gear is fit. In this process, the ring gear teeth around a cast iron flywheel are formed directly in net shape and free from any defect by the hot form-rolling method, followed by the thermomechanical treatment in a short time. The gear is superior to that made by the conventional hobbing and heat treatment in accuracy, strength and anti-wear property.
Technical Paper

Development of High Performance Three-Way-Catalyst

2006-04-03
2006-01-1061
In conventional gasoline engine vehicles, three-way catalysts are used to simultaneously remove HC, CO and NOx from the exhaust gas. The effectiveness of the catalyst to remove these harmful species depends strongly on the oxygen concentration in the exhaust gas. Deterioration of three-way catalyst results in a reduction in its purification activity and OSC (oxygen storage capacity). In this investigation, additive elements were used to enhance the durability and OSC of the catalyst support material. An optimized formulation of a CeO2-ZrO2 and a ZrO2 material was developed to have excellent durability, improved OSC, enhanced interaction between precious metals and support materials, and increase thermal stability. Using these newly developed support materials, catalysts with increased performance was designed.
Technical Paper

Analysis of Sintered Silicon Nitride Grinding Damage

1993-03-01
930163
Sintered silicon nitride, particularly in structural ceramics, has superior properties such as low weight, heat resistance, wear resistance, etc. It is already being applied to automobile engine parts such as the swirl chamber and the turbine rotor. In recent years, the strength of silicon nitride has shown to be above 1000MPa. This has been achieved through advances in manufacturing technology such as materials powder, forming, sintering and so on. But the silicon nitride is easily damaged during grinding because it has less fracture toughness than metal. Consequently, the inherent strength of the material is not demonstrated in the actual products presently produced. It is assumed that the main cause of strength reduction is microcrack. In ordinary grinding methods, the length of microcrack has been estimated at approximately twenty micrometers by fracture mechanics analysis.
Technical Paper

Development of an On-Board Type Oil Deterioration Sensor

1993-10-01
932840
According to the principle of pH measurement, an on-board type engine oil deterioration sensor has been developed. The developed sensor is composed of a Pb and oxidized stainless steel electrodes. The sensor signal shows a good linear relationship to the quasi-pH value of the oil. Especially in the region where the oil deterioration proceeds, the remaining basic additives in the oil is easily estimated from the sensor signal.
X