Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Dynamic Programming-Based Design of Shift Scheduling Map Taking into Account Clutch Energy Losses During Shift Transients

2016-04-05
2016-01-1116
The paper deals with the design of shift scheduling maps based on dynamic programing (DP) optimization algorithm. The recorded data related to a delivery vehicle fleet are used, along with a model of delivery truck equipped with a 12-gear automated manual transmission, for an analysis and reconstruction of the truck-implemented shift scheduling patterns. The same map reconstruction procedure has been applied to a set of DP optimization-based operating points. The cost function of DP optimization is extended by realistic clutch energy losses dissipated during shift transients, in order to implicitly introduce hysteresis in the shift scheduling maps for improved drivability. The different reconstructed shift scheduling maps are incorporated within the truck model and validated by computer simulations for different driving cycles.
Technical Paper

Hierarchical Neural Network-Based Prediction Model of Pedestrian Crossing Behavior at Unsignalized Crosswalks

2023-04-11
2023-01-0865
To enable smooth and low-risk autonomous driving in the presence of other road users, such as cyclists and pedestrians, appropriate predictive safe speed control strategies relying on accurate and robust prediction models should be employed. However, difficulties related to driving scene understanding and a wide variety of features influencing decisions of other road users significantly complexifies prediction tasks and related controls. This paper proposes a hierarchical neural network (NN)-based prediction model of pedestrian crossing behavior, which is aimed to be applied within an autonomous vehicle (AV) safe speed control strategy. Additionally, different single-level prediction models are presented and analyzed as well, to serve as baseline approaches.
X