Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Journal Article

An In-Cycle based NOx Reduction Strategy using Direct Injection of AdBlue

2014-10-13
2014-01-2817
In the last couple of decades, countries have enacted new laws concerning environmental pollution caused by heavy-duty commercial and passenger vehicles. This is done mainly in an effort to reduce smog and health impacts caused by the different pollutions. One of the legislated pollutions, among a wide range of regulated pollutions, is nitrogen oxides (commonly abbreviated as NOx). The SCR (Selective Catalytic Reduction) was introduced in the automotive industry to reduce NOx emissions leaving the vehicle. The basic idea is to inject a urea solution (AdBlue™) in the exhaust gas before the gas enters the catalyst. The optimal working temperature for the catalyst is somewhere in the range of 300 to 400 °C. For the reactions to occur without a catalyst, the gas temperature has to be at least 800 °C. These temperatures only occur in the engine cylinder itself, during and after the combustion.
Technical Paper

Impact of Multiple Injection Strategies on Efficiency and Combustion Characteristics in an Optical PPC Engine

2020-04-14
2020-01-1131
Partially premixed combustion (PPC) is a promising way to achieve high thermal efficiency and low emissions, especially by using multiple injection strategies. The mechanisms behind PPC efficiency are still to be explained and explored. In this paper, multiple injections have been used to affect the gross indicated efficiency in an optical PPC engine modified from a Volvo MD13 heavy-duty diesel engine. The aim is both to improve and impair the gross indicated efficiency to understand the differences. The combustion natural luminosity is captured by a high-speed camera, and the distribution of fuel, oxygen, and temperature during the combustion process has been further explored by CFD simulation. The results show that with the right combination of the pilot, main, and post injection the gross indicated efficiency can be improved.
Technical Paper

Optical Characterization of Methanol Sprays and Mixture Formation in a Compression-Ignition Heavy-Duty Engine

2020-09-15
2020-01-2109
Methanol is not a fuel typically used in compression ignition engines due to the high resistance to auto-ignition. However, conventional diesel combustion and PPC offer high engine efficiency along with low HC and CO emissions, albeit with the trade-off of increased NOx and PM emissions. This trade-off balance is mitigated in the case of methanol and other alcohol fuels, as they bring oxygen in the combustion chamber. Thus methanol compression ignition holds the potential for a clean and effective alternative fuel proposition. Most existing research on methanol is on SI engines and very little exists in the literature regarding methanol auto-ignition engine concepts. In this study, the spray characteristics of methanol inside the optically accessible cylinder of a DI-HD engine are investigated. The liquid penetration length at various injection timings is documented, ranging from typical PPC range down to conventional diesel combustion.
Journal Article

Toyota's Integrated Drive Power Control System for Downsized Turbocharged Engine

2015-04-14
2015-01-1636
New engine controls have been developed for the turbocharged Lexus NX200t to improve driving power by reducing engine torque output lag. Drive power management functions have been centralized in an integrated drive power control system. The newly developed controls minimize the potential reduction in drivability associated with the adoption of a turbocharged engine while improving fuel efficiency. General driveability issues commonly associated with a turbocharged engine include sudden increases in drive power due to the response lag of the turbocharger, and higher shifting frequencies if this response lag triggers a disturbed accelerator operation pattern by the driver. The developed technologies detect and control sudden increases in drive power to create the optimum drive power map, and reduce unnecessary shifts even if the driver's accelerator operation is disturbed.
Journal Article

Double Compression Expansion Engine Concepts: A Path to High Efficiency

2015-04-14
2015-01-1260
Internal combustion engine (ICE) fuel efficiency is a balance between good indicated efficiency and mechanical efficiency. High indicated efficiency is reached with a very diluted air/fuel-mixture and high load resulting in high peak cylinder pressure (PCP). On the other hand, high mechanical efficiency is obtained with very low peak cylinder pressure as the piston rings and bearings can be made with less friction. This paper presents studies of a combustion engine which consists of a two stage compression and expansion cycle. By splitting the engine into two different cycles, high-pressure (HP) and low-pressure (LP) cycles respectively, it is possible to reach high levels of both indicated and mechanical efficiency simultaneously. The HP cycle is designed similar to today's turbo-charged diesel engine but with an even higher boost pressure, resulting in high PCP. To cope with high PCP, the engine needs to be rigid.
Journal Article

Development of New Toyota D-Series Turbocharger for GD Diesel Engine

2015-09-01
2015-01-1969
There is increasing demand for highly functional diesel engine turbochargers capable of meeting Euro 6 emissions regulations while improving dynamic performance and fuel economy. However, since these requirements cannot be easily satisfied through refinements of existing technology, Toyota Motor Corporation has developed the new D-series turbocharger for initial installation in its GD diesel engine. The higher efficiency and wider operation range of the new turbocharger enabled the amount of the turbine flow capacity to be reduced by 30%, while helping to improve dynamic response and fuel economy. The mechanism causing the generation of fuel deposits in the fuel injection system upstream of the turbocharger, which was adopted for compliance with emissions regulations, was analyzed and fundamental countermeasures were applied. The result is a new highly functional turbocharger with greatly enhanced reliability.
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Journal Article

A Custom Integrated Circuit with On-chip Current-to-Digital Converters for Active Hydraulic Brake System

2016-04-05
2016-01-0091
This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
Journal Article

Exhaust PM Emissions Analysis of Alcohol Fueled Heavy-Duty Engine Utilizing PPC

2016-10-17
2016-01-2288
The focus has recently been directed towards the engine out soot from Diesel engines. Running an engine in PPC (Partially Premixed Combustion) mode has a proven tendency of reducing these emissions significantly. In addition to combustion strategy, several studies have suggested that using alcohol fuels aid in reducing soot emissions to ultra-low levels. This study analyzes and compares the characteristics of PM emissions from naphtha gasoline PPC, ethanol PPC, methanol PPC and methanol diffusion combustion in terms of soot mass concentration, number concentration and particle size distribution in a single cylinder Scania D13 engine, while varying the intake O2. Intake temperature and injection pressure sweeps were also conducted. The fuels emitting the highest mass concentration of particles (Micro Soot Sensor) were gasoline and methanol followed by ethanol. The two alcohols tested emitted nucleation mode particles only, whereas gasoline emitted accumulation mode particles as well.
Journal Article

Development of CFD Inverse Analysis Technology Using the Transient Adjoint Method and Its Application to Engine In-Cylinder Flow

2016-04-05
2016-01-0607
Conventional CFD-based shape optimization technology that uses parametric shape modification and optimal solutions searching algorithms has the two problems: (1) outcome of optimized shapes depend on the selection of design parameters made by the designer, and (2) high computational costs. To resolve those problems, two innovative inverse analysis technologies based on the Adjoint Method were developed in previous study: surface geometry deformation sensitivity analysis to identify the locations to be modified, and topology optimization to generate an optimal shape for maximizing the cost function in the constrained design space. However, these technologies are only applicable to steady flows. Since most flows in a vehicle (such as engine in-cylinder flow) are transient, a practical technology for surface geometry sensitivity analysis has been developed based on the Transient Adjoint Method.
Journal Article

A CFD Analysis Method for Prediction of Vehicle Exterior Wind Noise

2017-03-28
2017-01-1539
High frequency wind noise caused by turbulent flow around the front pillars of a vehicle is an important factor for customer perception of ride comfort. In order to reduce undesirable interior wind noise during vehicle development process, a calculation and visualization method for exterior wind noise with an acceptable computational cost and adequate accuracy is required. In this paper an index for prediction of the strength of exterior wind noise, referred to as Exterior Noise Power (ENP), is developed based on an assumption that the acoustic power of exterior wind noise can be approximated by the far field acoustic power radiated from vehicle surface. Using the well-known Curle’s equation, ENP can be represented as a surface integral of an acoustic intensity distribution, referred to as Exterior Noise Power Distribution (ENPD). ENPD is estimated from turbulent surface pressure fluctuation and mean convective velocity in the vicinity of the vehicle surface.
Journal Article

Evaluation of Different Turbocharger Configurations for a Heavy-Duty Partially Premixed Combustion Engine

2017-09-04
2017-24-0164
The engine concept partially premixed combustion (PPC) has proved higher gross indicated efficiency compared to conventional diesel combustion engines. The relatively simple implementation of the concept is an advantage, however, high gas exchange losses has made its use challenging in multi-cylinder heavy duty engines. With high rates of exhaust gas recirculation (EGR) to dilute the charge and hence limit the combustion rate, the resulting exhaust temperatures are low. The selected boost system must therefore be efficient which could lead to large, complex and costly solutions. In the presented work experiments and modelling were combined to evaluate different turbocharger configurations for the PPC concept. Experiments were performed on a multi-cylinder engine. The engine was modified to incorporate long route EGR and a single-stage turbocharger, however, with compressed air from the building being optionally supplied to the compressor.
Journal Article

Transition from HCCI to PPC: Investigation of Fuel Distribution by Planar Laser Induced Fluorescence (PLIF)

2017-03-28
2017-01-0748
In a previous study, in order to investigate the effect of charge stratification on combustion behavior such as combustion efficiency and combustion phasing which also largely affects the emissions, an experiment was conducted in a heavy-duty compression ignition (CI) metal engine. The engine behavior and emission characteristics were studied in the transition from HCCI mode to PPC mode by varying the start of injection (SOI) timing. To gain more detailed information of the mixing process, in-cylinder laser diagnostic measurements, namely fuel-tracer planar laser induced fluorescence (PLIF) imaging, were conducted in an optical version of the heavy-duty CI engine mentioned above. To the authors’ best knowledge, this is the first time to perform fuel-tracer PLIF measurements in an optical engine with a close to production bowl in piston combustion chamber, under transition conditions from HCCI to PPC mode.
Journal Article

Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements

2017-03-28
2017-01-1046
Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
Journal Article

Development of New IGBT to Reduce Electrical Power Losses and Size of Power Control Unit for Hybrid Vehicles

2017-03-28
2017-01-1244
One way to improve the fuel efficiency of HVs is to reduce the losses and size of the Power Control Unit (PCU). To achieve this, it is important to reduce the losses of power devices (such as IGBTs and FWDs) used in the PCU since their losses account for about 20% of the total loss of an HV. Furthermore, another issue when reducing the size of power devices is ensuring the thermal feasibility of the downsized devices. To achieve the objectives of the 4th generation PCU, the following development targets were set for the IGBTs: reduce power losses by 19.8% and size by 30% compared to the 3rd generation. Power losses were reduced by the development of a new Super Body Layer (SBL) structure, which improved the trade-off relationship between switching and steady-state loss. This trade-off relationship was improved by optimizing the key SBL concentration parameter.
Journal Article

Influence of Bio Diesel Fuel on Engine Oil Performance

2010-05-05
2010-01-1543
To evaluate the influence of FAME, which has poor oxidation stability, on engine oil performance, an engine test was conducted under large volumes of fuel dilution by post-injection. The test showed that detergent consumption and polymerization of FAME were accelerated in engine oil, causing a severe deterioration in piston cleanliness and sludge protection performance of engine oil.
Journal Article

Ethanol-Diesel Fumigation in a Multi-Cylinder Engine

2008-04-14
2008-01-0033
Fumigation was studied in a 12 L six-cylinder heavy-duty engine. Port-injected ethanol was ignited with a small amount of diesel injected into the cylinder. The setup left much freedom for influencing the combustion process, and the aim of this study was to find operation modes that result in a combustion resembling that of a homogeneous charge compression ignition (HCCI) engine with high efficiency and low NOx emissions. Igniting the ethanol-air mixture using direct-injected diesel has attractive properties compared to traditional HCCI operation where the ethanol is ignited by pressure alone. No preheating of the mixture is required, and the amount of diesel injected can be used to control the heat release rate. The two fuel injection systems provide a larger flexibility in extending the HCCI operating range to low and high loads. It was shown that cylinder-to-cylinder variations present a challenge for this type of combustion.
Journal Article

Investigation of the Combustion Characteristics with Focus on Partially Premixed Combustion in a Heavy Duty Engine

2008-06-23
2008-01-1658
Partially Premixed Combustion (PPC) has shown its potential by combining high combustion controllability with emission characteristics that are close to those of an HCCI engine. In order to get PPC the ignition delay needs to be long enough for the fuel and air to mix prior to combustion. This can be achieved by injecting the fuel sufficiently early while running with high EGR. In order to find out where and how PPC occurs a map that shows the changes in combustion characteristics with injection timing and EGR was created. The combustion characteristics were studied in a six cylinder heavy duty engine where the Start of Injection (SOI) was swept from early to late injection over a wide range of EGR levels. The emissions were monitored during the sweeps and in the most promising regions, with low emissions and high efficiency, additional changes in injection pressure and engine speed were applied to get a more versatile picture of the combustion.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
X