Refine Your Search

Topic

Search Results

Journal Article

Modeling and Experimental Studies of Crack Propagation in Laminated Glass Sheets

2014-04-01
2014-01-0801
Polyvinyl Butyral (PVB) laminated glass has been widely used in automotive industry as windshield material. Cracks on the PVB laminated glass contain large amount of impact information, which can contribute to accident reconstruction investigation. In this study, the impact-induced in-plane dynamic cracking of the PVB laminated glass is investigated. Firstly, a drop-weight combined with high-speed photography experiment device is set up to investigate the radial cracks propagation on the PVB laminated glass sheet. Both the morphology and the velocity time history curve of the radial cracks are recorded and analyzed to investigate the basic mechanism of the crack propagation process. Afterwards, a three-dimensional laminated plate finite element (FE) model is set up and dynamic cracking process is simulated based on the extended finite element method (XFEM).
Journal Article

On the Coupling Stiffness in Closed-Loop Coupling Disc Brake Model through Optimization

2015-04-14
2015-01-0668
The study and prevention of unstable vibration is a challenging task for vehicle industry. Improving predicting accuracy of braking squeal model is of great concern. Closed-loop coupling disc brake model is widely used in complex eigenvalue analysis and further analysis. The coupling stiffness of disc rotor and pads is one of the most important parameters in the model. But in most studies the stiffness is calculated by simple static force-deformation simulation. In this paper, a closed-loop coupling disc brake model is built. Initial values of coupling stiffness are estimated from static calculation. Experiment modal analysis of stationary disc brake system with brake line pressure and brake torques applied is conducted. Then an optimization process is initiated to minimize the differences between modal frequencies predicted by the stationary model and those from test. Thus model parameters more close to reality are found.
Technical Paper

Optimization of Piston Bowl Geometry for a Low Emission Heavy-Duty Diesel Engine

2020-09-15
2020-01-2056
A computational fluid dynamics (CFD) guided design optimization was conducted for the piston bowl geometry for a heavy-duty diesel engine. The optimization goal was to minimize engine-out NOx emissions without sacrificing engine peak power and thermal efficiency. The CFD model was validated with experiments and the combustion system optimization was conducted under three selected operating conditions representing low speed, maximum torque, and rated power. A hundred piston bowl shapes were generated, of which 32 shapes with 3 spray angles for each shape were numerically analyzed and one optimized design of piston bowl geometry with spray angle was selected. On average, the optimized combustion system decreased nitrogen oxide (NOx) emissions by 17% and soot emissions by 41% without compromising maximum engine power and fuel economy.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Journal Article

Research on Temperature and Strain Rate Dependent Viscoelastic Response of Polyvinyl Butaral Film

2016-04-05
2016-01-0519
The mechanical behavior of polyvinyl butyral (PVB) film plays an important role in windshield crashworthiness and pedestrian protection and should be depth study. In this article, the uniaxial tension tests of PVB film at various strain rates (0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1) and temperatures (-10°C, 0°C, 10°C, 23°C, 40°C, 55°C, 70°C) are conducted to investigate its mechanical behavior. Then, temperature and strain rate dependent viscoelastic characteristics of PVB are systematically studied. The results show that PVB is a kind of temperature and strain rate sensitive thermal viscoelastic material. Temperature increase and strain rate decrease have the same influence on mechanical properties of PVB. Besides, the mechanical characteristics of PVB change non-linearly with temperature and strain rate. Finally, two thermal viscoelastic constitutive model (ZWT model and DSGZ model) are suggested to describe the tension behavior of PVB film at various strain rates and temperatures.
Technical Paper

Cooperative Ramp Merging Control for Connected and Automated Vehicles

2020-02-24
2020-01-5020
Traffic congestions are increasingly severe in urban areas, especially at the merging areas of the ramps and the arterial roads. Because of the complex conflict relationship of the vehicles in ramps and arterial roads in terms of time-spatial constraints, it is challenging to coordinate the motion of these vehicles, which may easily cause congestions at the merging areas. The connected and automated vehicles (CAVs) provides potential opportunities to solve this problem. A centralized merging control method for CAVs is proposed in this paper, which can organize the traffic movements in merging areas efficiently and safely. In this method, the merging control model is built to formulate the vehicle coordination problem in merging areas, which is then transformed to the discrete nonlinear optimization form. A simulation model is built to verify the proposed method.
Technical Paper

An Improved Probabilistic Threat Assessment Method for Intelligent Vehicles in Critical Rear-End Situations

2020-04-14
2020-01-0698
Threat assessment (TA) method is vital in the decision-making process of intelligent vehicles (IVs), especially for ADAS systems. In the research of TA, the probabilistic threat assessment (PTA) method is acting an increasing role, which can reduce the uncertainties of driver’s maneuvers. However, the driver behavior model (DBM) used in present PTA methods was mainly constructed by limited data or simple functions, which is not entirely reasonable and may affect the performance of the TA process. This work aims to utilize crash data extracted from Event Data Recorder (EDR) to establish more accurate DBM and improve the current PTA method in rear-end situations. EDR data with responsive maneuvers were firstly collected, which were then employed to construct the initial DBM (I-DBM) model by using the multivariate Gaussian distribution (MGD) framework. Besides, the model was further subdivided into six parts by two important risk indicators, Time-to-collision (TTC) and velocity.
Technical Paper

Decision Making and Trajectory Planning for Lane Change Control Inspired by Parallel Parking

2020-04-14
2020-01-0134
Lane-changing systems have been developed and applied to improve environmental adaptability of advanced driver assistant system (ADAS) and driver comfort. Lane-changing control consists of three steps: decision making, trajectory planning and trajectory tracking. Current methods are not perfect due to weaknesses such as high computation cost, low robustness to uncertainties, etc. In this paper, a novel lane changing control method is proposed, where lane-changing behavior is analogized to parallel parking behavior. In the perspective of host vehicle with lane-changing intention, the space between vehicles in the target adjacent lane can be regarded as dynamic parking space. A decision making and path planning algorithm of parallel parking is adapted to deal with lane change condition. The adopted algorithm based on rules checks lane-changing feasibility and generates desired path in the moving reference system at the same speed of vehicles in target lane.
Technical Paper

Super-Twisting Second-Order Sliding Mode Control for Automated Drifting of Distributed Electric Vehicles

2020-04-14
2020-01-0209
Studying drifting dynamics and control could extend the usable state-space beyond handling limits and maximize the potential safety benefits of autonomous vehicles. Distributed electric vehicles provide more possibilities for drifting control with better grip and larger maximum drift angle. Under the state of drifting, the distributed electric vehicle is a typical nonlinear over-actuated system with actuator redundancy, and the coupling of input vectors impedes the direct use of control algorithm of upper. This paper proposes a novel automated drifting controller for the distributed electric vehicle. First, the nonlinear over-actuated system, comprised of driving system, braking system and steering system, is formulated and transformed to a square system through proposed integrative recombination method of control channel, making general nonlinear control algorithms suitable for this system.
Technical Paper

Tire Force Fast Estimation Method for Vehicle Dynamics Stability Real Time Control

2007-10-30
2007-01-4244
A tire force estimation algorithm is proposed for vehicle dynamic stability control (DSC) system to protect the vehicle from deviation of the normal dynamics attitude and to realize the improved dynamics stability in limited driving conditions. The developed algorithm is based on the theoretical analysis of all the subsystems of the active brake control in DSC system and modulation in DSC, and the robustness is achieved by a compensation method using nonlinear filter in the real time control. The software-in-loop simulation using Matlab/AMEsim and the ground test in the real car show the validation of this method.
Technical Paper

Analysis of Causes of Rear-end Conflicts Using Naturalistic Driving Data Collected by Video Drive Recorders

2008-04-14
2008-01-0522
Studying traffic accidents by using naturalistic driving data has become increasingly appealing for its potential benefits in improving road safety. This paper presents findings from a field test which has been conducted on 50 taxis in the urban areas of Beijing for 10 months using Video Drive Recorders (VDRs). The VDR used in this study could record the information of vehicle front view video, vehicle states, as well as driver operations immediately before and after an event. The drivers were given no specific instructions during the test, and the instrumentation for data collection was unobtrusive. Important safety-relevant parameters, such as vehicle speed, pre-event maneuver, time headway, time-to-collision, and driver reaction time, were calculated with precision. Based on these parameters, an analysis into features and causes of rear-end conflicts is performed.
Technical Paper

Study on Modeling Method for Common Rail Diesel Engine Calibration and Optimization

2004-03-08
2004-01-0426
The large amount of controllable fuel injection parameters of Diesel engine equipped with high pressure common-rail fuel injection system makes the control of combustion more flexible, and also makes the workload of calibration and optimization much heavier. For higher efficiency, model-based approaches are presented and researched. This contribution presents a new method for modeling which is constituted by Neural Network and Adaptive Network-based Fussy Inference System (ANFIS). The experiment is carried out on a 6-cylinder common rail diesel engine. The analysis and experiment show that effective modeling can be achieved using this method.
Technical Paper

Development of a Legform Impactor with 4-DOF Knee-Joint for Pedestrian Safety Assessment in Omni-Direction Impacts

2011-04-12
2011-01-0085
The issue of car-to-pedestrian impact safety has received more and more attention. For leg protection, a legform impactor with 2 degrees-of-freedom (DOF) proposed by EEVC is required in current regulations for injury assessment, and the Japan Automobile Manufacturers Association Inc. (JAMA) and Japan Automobile Research Institute (JARI) have developed a more biofidelic pedestrian legform since 2000. However, studies show that those existing legforms may not be able to cover some car-to-pedestrian impact situations. This paper documents the development of a new pedestrian legform with 4 DOFs at the knee-joint. It can better represent the kinematics characteristics of human knee-joint, especially under loading conditions in omni-direction impacts. The design challenge is to solve the packaging problem, including design of the knee-joint mechanisms and layout of all the sensors in a limited space of the legform.
Technical Paper

Head Protection Characteristics of Windshield During Pedestrian-Vehicle Accident

2011-04-12
2011-01-0082
The windshield is one of the most critical vehicle components in terms of pedestrian safety; however, it has not been thoroughly and systematically investigated through combined experimental and theoretical analysis. Firstly, this paper carries out quasi-static experiments on Material Testing System (MTS) and dynamic experiments on Split Hopkinson Pressure Bar (SHPB) and new tests data are obtained. Results indicate that Polyvinyl butyral (PVB)-laminated glass behaves nonlinearly and rate-dependently under various strain rates, from 1x10-⁵s-₁~6x10₃ s-₁. Thus, a constitutive model covering all strain rates is proposed to describe the constitutive behavior of PVB-laminated glass and it fits well with the experimental data. Further, the constitutive relation is embedded into the 3D finite element model of windshield. With the definition of four governing factors and two evaluation indicators, the head protection characteristics of windshield are numerically studied.
Technical Paper

A New Method to Accelerate Road Test Simulation on Multi-Axial Test Rig

2017-03-28
2017-01-0200
Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
Technical Paper

Autonomous Emergency Braking Control Based on Hierarchical Strategy Using Integrated-Electro-Hydraulic Brake System

2017-09-23
2017-01-1964
Highway traffic safety has been the most serious problem in current society, statistics show that about 70% to 90% of accidents are caused by driver operational errors. The autonomous emergency braking (AEB) is one of important vehicle intelligent safety technologies to avoid or mitigate collision. The AEB system applies the vehicle brakes when a collision is eminent in spite of any reaction by the driver. In some technologies, the system forewarns the driver with an acoustic signal when a collision is still avoidable, but subsequently applies the brakes automatically if the driver fails to respond. This paper presents the development and implementation of a rear-end collision avoidance system based on hierarchical control framework which consists of threat assessment layer, wheel slip ratio control layer and integrated-electro-hydraulic brake (IEHB) actuator control layer.
Technical Paper

Energy Management and Design Optimization for a Power-Split, Heavy-Duty Truck

2017-10-08
2017-01-2450
Power-split configuration is highlighted as the most popular concept for full hybrid electric vehicles (HEV). However, the energy management and design of power-split heavy duty truck under Chinese driving conditions still need to be investigated. In this paper, the parametric design, a rule-based control strategy and an equivalent consumption minimization strategy (ECMS) for the power-split heavy duty truck are presented. Besides, the influence of a penalty factor also discussed under ECMS algorithm. Meanwhile, two different methods to search the engine operation point have been proposed and the reason of different economy performance is presented by using energy flow chart. And the simulation results show both fuel consumption can satisfy the second phase fuel consumption standard and the third phase fuel consumption standard which will be implemented in 2020, under C-WTVC (Chinese-World Transient Vehicle Cycle).
Technical Paper

Occupant Injury Response Prediction Prior to Crash Based on Pre-Crash Systems

2017-03-28
2017-01-1471
Occupant restraint systems are developed based on some baseline experiments. While these experiments can only represent small part of various accident modes, the current procedure for utilizing the restraint systems may not provide the optimum protection in the majority of accident modes. This study presents an approach to predict occupant injury responses before the collision happens, so that the occupant restraint system, equipped with a motorized pretensioner, can be adjusted to the optimal parameters aiming at the imminent vehicle-to-vehicle frontal crash. The approach in this study takes advantage of the information from pre-crash systems, such as the time to collision, the relative velocity, the frontal overlap, the size of the vehicle in the front and so on. In this paper, the vehicle containing these pre-crash features will be referred to as ego vehicle. The information acquired and the basic crash test results can be integrated to predict a simplified crash pulse.
Technical Paper

Preliminary study of uniform restraint concept for protection of rear-seat occupant under mid and high crash severities

2016-04-05
2016-01-1528
As the restraint technologies for front-seat occupant protection advance, such as seatbelt pre-tensioner, seatbelt load limiter and airbag, relative effectiveness of rear-seat occupant protection decreases, especially for the elderly. Some occupant protection systems for front-seat have been proved to be effective for rear-seat occupant protection as well, but they also have some drawbacks. Seatbelt could generate unwanted local penetrations to the chest and abdomen. And for rear-seat occupants, it might be difficult to install airbag and set deployment time. For crash protection, it is desirable that the restraint loads are spread to the sturdy parts of human body such as head, shoulders, rib cage, pelvis and femurs, as uniformly as possible. This paper explores a uniform restraint concept aiming at providing protection in wide range of impact severity for rear-seat occupants.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
X