Refine Your Search

Topic

Search Results

Journal Article

Research on Temperature and Strain Rate Dependent Viscoelastic Response of Polyvinyl Butaral Film

2016-04-05
2016-01-0519
The mechanical behavior of polyvinyl butyral (PVB) film plays an important role in windshield crashworthiness and pedestrian protection and should be depth study. In this article, the uniaxial tension tests of PVB film at various strain rates (0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1) and temperatures (-10°C, 0°C, 10°C, 23°C, 40°C, 55°C, 70°C) are conducted to investigate its mechanical behavior. Then, temperature and strain rate dependent viscoelastic characteristics of PVB are systematically studied. The results show that PVB is a kind of temperature and strain rate sensitive thermal viscoelastic material. Temperature increase and strain rate decrease have the same influence on mechanical properties of PVB. Besides, the mechanical characteristics of PVB change non-linearly with temperature and strain rate. Finally, two thermal viscoelastic constitutive model (ZWT model and DSGZ model) are suggested to describe the tension behavior of PVB film at various strain rates and temperatures.
Technical Paper

Safety Development Trend of the Intelligent and Connected Vehicle

2020-04-14
2020-01-0085
Automotive safety is always the focus of consumers, the selling point of products, the focus of technology. In order to achieve automatic driving, interconnection with the outside world, human-automatic system interaction, the security connotation of intelligent and connected vehicles (ICV) changes: information security is the basis of its security. Functional safety ensures that the system is operating properly. Behavioral safety guarantees a secure interaction between people and vehicles. Passive security should not be weakened, but should be strengthened based on new constraints. In terms of information safety, the threshold for attacking cloud, pipe, and vehicle information should be raised to ensure that ICV system does not fail due to malicious attacks. The cloud is divided into three cloud platforms according to functions: ICVs private cloud, TSP cloud, public cloud.
Journal Article

Energy Harvesting in Tire: State-of-the-Art and Challenges

2018-04-03
2018-01-1119
Although energy harvesting systems are extensively used in different fields, studies on the application of energy harvesters embedded in tires for vehicle control are rare and mostly focus on solving power supply problems of tire pressure sensors. Sensors are traditionally powered by an embedded battery, which must be replaced periodically because of its limited energy storage. Heightened interest in vehicle safety is expected to drive increased design and manufacture of in-tire sensors, which in turn, translates to rising demand for power generation in tires. These challenges emphasize the need to investigate the substitution of batteries and in-tire energy harvesting systems. Current in-tire energy harvesting methods involve piezoelectric, electromagnetic, and electrostatic power generation, whose energy sources include tire vibrations, deformations, and rotations. Piezoelectric harvesters are generally compact but operate for short durations.
Technical Paper

Tire Force Fast Estimation Method for Vehicle Dynamics Stability Real Time Control

2007-10-30
2007-01-4244
A tire force estimation algorithm is proposed for vehicle dynamic stability control (DSC) system to protect the vehicle from deviation of the normal dynamics attitude and to realize the improved dynamics stability in limited driving conditions. The developed algorithm is based on the theoretical analysis of all the subsystems of the active brake control in DSC system and modulation in DSC, and the robustness is achieved by a compensation method using nonlinear filter in the real time control. The software-in-loop simulation using Matlab/AMEsim and the ground test in the real car show the validation of this method.
Technical Paper

The 3-Dimensional Modal Parameter Tire Model and Simulation of Tire Rolling Over Oblique Cleats

2008-04-14
2008-01-1408
Based on the simulation results of tire rolling over perpendicular cleats by MPTM model, in present paper, a series of simulation results of tire rolling over oblique cleats with different angles are given. For that, the Modal Parameter Tire Camber property Model is established. For the appraisement of comparison between simulation and experimental results a problem concern the validation test is pointed out. In the end, simulation results of tire rolling over a series of continuous cleats are given.
Technical Paper

Analyzing Traffic Accident Causations in China Based on Neural Network Combined

2008-04-14
2008-01-0533
Clarifying accident causations can provide a strong foundation to prevent traffic accidents and reduce severities. This paper uses Chinese government census data from 1996-2003[1∼8] and models a relationship between various kinds of traffic accident causations and the severities of the traffic accidents based on neural network combined (NNC). The paper adapts multi-folder cross validation concept to enhance the properties of NNC. It then conducts sensitivity analysis on the trained NNC to identify the prioritized importance of traffic accident causations as they are to the severities of traffic accident. Lastly, the results are validated and compared by the findings of previous researches.
Technical Paper

An Empirical Model For Longitudinal Tire-Road Friction Estimation

2004-03-08
2004-01-1082
It's important to monitor the longitudinal friction at the tire/road interface for automotive dynamic control systems like ABS and ASR. Of all the tire friction models the empirical model provides a good illustration on longitudinal wheel forces. An improved exponential friction model based on vehicle driving states was proposed in this paper, the model can monitor the friction characteristics between the tire and road surface for longitudinal braking. Its validity was proven using experiments and comparison with the Pacejka Magic Formula (MF) model and others.
Technical Paper

Simulations on Special Structure ISG Motor Used for Hybrid Electrical Vehicles Aimed at Active Damping

2017-03-28
2017-01-1123
Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
Technical Paper

Piecewise Affine-Based Shared Steering Torque Control Scheme for Cooperative Path-Tracking: A Game-Theoretic Approach

2018-04-03
2018-01-0606
The new concept of “human-machine shared control” provides an amazing thinking to enhance driving safety, which has been attracted a great deal of research effort in recent years. However, little attention has been paid to the nonlinearity of the shared control system brought by the tire, which significantly influences the control performance under extreme driving conditions. This paper presents a novel shared steering torque control scheme to model the human-machine steering torque interaction near the vehicle’s handling limit, where both driver and driver assistance system (DAS) are exerting steering torque to maneuver the vehicle. A six-order driver-vehicle dynamic system is presented to elaborate the relationship between steering torque input and vehicle lateral motion response. Particularly, we use a piecewise affine (PWA) method to approximate the tire nonlinearity.
Technical Paper

A Dynamic Model for Tire/Road Friction Estimation under Combined Longitudinal/Lateral Slip Situation

2014-04-01
2014-01-0123
A new dynamic tire model for estimating the longitudinal/lateral road-tire friction force was derived in this paper. The model was based on the previous Dugoff tire model, in consideration of its drawback that it does not reflect the actual change trend that the tire friction force decreases with the increment of wheel slip ratio when it enters into the nonlinear region. The Dugoff model was modified by fitting a series of tire force data and compared with the commonly used Magic Formula model. This new dynamic friction model is able to capture accurately the transient behavior of the friction force observed during pure longitudinal wheel slip, lateral sideslip and combined slip situation. Simulation has been done under different situations, while the results validate the accuracy of the new tire friction model in predicting tire/road friction force during transient vehicle motion.
Technical Paper

Numerical Study of DMF and Gasoline Spray and Mixture Preparation in a GDI Engine

2013-04-08
2013-01-1592
2, 5-Dimethylfuran (DMF) has been receiving increasing interest as a potential alternative fuel to fossil fuels, owing to the recent development of new production technology. However, the influence of DMF properties on the in-cylinder fuel spray and its evaporation, subsequent combustion processes as well as emission formation in current gasoline direct injection (GDI) engines is still not well understood, due to the lack of comprehensive understanding of its physical and chemical characteristics. To better understand the spray characteristics of DMF and its application to the IC engine, the fuel sprays of DMF and gasoline were investigated by experimental and computational methods. The shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques were used for measuring spray penetration, droplet velocity and size distribution of both fuels.
Technical Paper

Study on Cavitation Effect of Hydraulic Retarder

2022-09-19
2022-01-1169
Hydraulic retarder is important auxiliary brake device which widely used in commercial vehicles for its economy, safety and driving comfort, however cavitation will occur and reduce the braking performance when hydraulic retarder operates at high speed. In this paper, a model of hydraulic retarder considering cavitation effect was established, and the reliability of the model was verified by comparing with the external characteristics of the product which was obtained from Voith’s official discloses data. Then the cavitation of hydraulic retarder under high-speed working condition was studied by the establishing simulation model. The simulation model can describe and analyze the internal flow field in the hydraulic retarder, and can be used as an important tool for the development and optimization of hydraulic retarder in the future. When hydraulic retarder’s rotational speed is about 1500rpm, the cavitation will be observed in the working chamber.
Technical Paper

Characterizing Propane Flash Boiling Spray from Multi-Hole GDI Injector

2018-04-03
2018-01-0278
In this research, propane flash boiling sprays discharged from a five-hole gasoline direct injector were studied in a constant volume vessel. The fuel temperature (Tfuel) ranged from 30 °C to 90 °C, and the ambient pressure (Pamb) varied from 0.05 bar to 11.0 bar. Different flash boiling spray behavior compared to that under sub-atmospheric conditions was found at high Pamb. Specifically, at the sub-atmospheric pressures, the individual flashing jets merged into one single jet due to the strong spray collapse. In contrast, at Pamb above 3.0 bar and Tfuel above 50 °C, the spray collapse was mitigated and the flashing jets were separated from each other. Further analyses revealed that the mitigation of spray collapse at high Pamb was ascribed to the suppression of jet expansion. In addition, it was found that the spray structure was much different at similar Rp, indicating that Rp lacked the generality in describing the structure of flash boiling sprays.
Journal Article

An Efficient Path Planning Methodology Based on the Starting Region Selection

2020-04-14
2020-01-0118
Automated parking is an efficient way to solve parking difficulties and path planning is of great concern for parking maneuvers [1]. Meanwhile, the starting region of path planning greatly affects the parking process and efficiency. The present research of the starting region are mostly determined based on a single algorithm, which limits the flexibility and efficiency of planning feasible paths. This paper, taking parallel parking and vertical parking for example, proposes a method to calculate the starting region and select the most suitable path planning algorithm for parking, which can improve the parking efficiency and reduce the complexity. The collision situations of each path planning algorithm are analyzed under collision-free conditions based on parallel and vertical parking. The starting region for each algorithm can then be calculated under collision-free conditions.
Technical Paper

High-Power Synchronous Rectification Drive Power System Based on PID Control

2022-03-29
2022-01-0720
The driving power system can be combined with lasers, lights, etc., and applied to automobiles to achieve various functions. Under the general trend of the development of intelligent vehicles, people have higher and higher requirements for the accuracy and power of various equipment. However, as power increases, how to ensure the stability of factors such as current is a challenging problem. Therefore, it is extremely important to study and design a high-power drive system in this paper, so as to ensure a stable output of the current. The system is composed of power supply, load, secondary power supply and control chip. The choice of power supply and load is conventional model. The secondary power supply adopts step-down circuit, with synchronous rectifier chip, which can effectively reduce energy consumption, and with temperature protection device, which can ensure the safe and reliable operation of equipment.
Technical Paper

Trajectory Following Control for Automated Drifting of 4WID Vehicles

2022-03-29
2022-01-0911
It is very significant for autonomous vehicles to have the ability to operate beyond the stable handling limits, which plays a vital role in vehicles’ active safety and enhances riding and driving pleasure. For traditional vehicles, it is rather difficult to control the longitudinal speed, sideslip angle and yaw rate simultaneously when drifting along a given trajectory because they are under-actuated. Nevertheless, for a 4-wheel-independent-drive (4WID) vehicle, it is possible and controllable thanks to its over-actuated characteristics. This article designs a trajectory following control strategy for automated drifting of 4WID vehicles. First, a double-track 7 degree of freedom (7DOF) vehicle dynamic model is established, which incorporates longitudinal and lateral load transfer and considers nonlinear tire models. The controller which proposes a hierarchical architecture is then designed.
Journal Article

Lap Time Optimization and Path Following Control for 4WS & 4WID Autonomous Vehicle

2022-03-29
2022-01-0376
In contrast to a normal vehicle, a 4-wheel steer (4WS) and 4-wheel independent drive (4WID) vehicle provides more flexibilities in vehicle dynamic control and better handling performance, since both the steer angle and drive torque of each wheel can be controlled. However, for motorsports, how much lap time can be improved with such a vehicle is a problem few discussed. So, this paper focuses on the racing line optimization and lap time improvement for a 4WS &4WID vehicle. First, we optimize the racing line and lap time of three given circuits with the genetic algorithm (GA) and interior-point method, and several objective functions are compared. Next, to evaluate the lap time improvement of 4WS & 4WID, a detailed vehicle dynamic model of our 4WS & 4WID platform vehicle is built in Carsim. To follow the racing line, a path following controller which contains a PID speed controller and a model predictive control (MPC) yaw rate controller is built.
Technical Paper

Fuel Economy Regulations and Technology Roadmaps of China and the US: Comparison and Outlook

2018-09-10
2018-01-1826
In order to address the increasing energy and environmental concerns, China and the US both launched the fuel economy regulations and aim to push the development of technology. In this study, the stringency of CAFC and CAFE regulations and the technology development of two countries are compared. Besides, the optimal technology pathways of America and automakers for the compliance of CAFE regulations are calculated based on the modified VOLPE model, and the results are used as reference for China. The results indicate that the annual regulation improvement rates of China is higher than America and the AIR of China 2015-2020 regulation reaches 6.2% and is the most stringent phase in 10 years from 2015 to 2025. From the perspective of technology, there are still big gaps between China and the US in the applications of advanced fuel saving technologies.
Technical Paper

An Innovative Design of In-Tire Energy Harvester for the Power Supply of Tire Sensors

2018-04-03
2018-01-1115
With the development of intelligent vehicle and active vehicle safety systems, the demand of sensors is increasing, especially in-tire sensors. Tire parameters are essential for vehicle dynamic control, including tire pressure, tire temperature, slip angle, longitudinal force, etc.. The diversification and growth of in-tire sensors require adequate power supply. Traditionally, embedded batteries are used to power sensors in tire, however, they must be replaced periodically because of the limited energy storage. The power limitation of the batteries would reduce the real-time data transmission frequency and deteriorate the vehicle safety. Heightened interest focuses on generating power through energy harvesting systems in replace of the batteries. Current in-tire energy harvesting devices include piezoelectric, electromagnetic, electrostatic and electromechanical mechanism, whose energy sources include tire deformations, vibrations and rotations.
Technical Paper

Torque Vectoring Control Strategies for Distributed Electric Drive Formula SAE Racing Car

2021-04-06
2021-01-0373
This paper presents a two-layer torque vectoring control strategy for the Formula SAE racing car of Tsinghua University to enhance steering response, lateral stability and track performance. Firstly, the dynamic model of the existing FSAE car is built as parameters of tires, suspensions, motors and aerodynamics are measured and identified. Secondly, this paper develops a two-layer torque vectoring strategy, the upper-layer direct yaw moment (DYC) controller and the lower-layer torque distribution controller are developed in Simulink. The upper-layer sliding mode control DYC controller calculates the target additional yaw moment according to the target yaw rate based on the two-degree-of-freedom (2DOF) reference model, and the sideslip angle is constrained as well.
X