Refine Your Search

Topic

Search Results

Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Technical Paper

Decision Making and Trajectory Planning for Lane Change Control Inspired by Parallel Parking

2020-04-14
2020-01-0134
Lane-changing systems have been developed and applied to improve environmental adaptability of advanced driver assistant system (ADAS) and driver comfort. Lane-changing control consists of three steps: decision making, trajectory planning and trajectory tracking. Current methods are not perfect due to weaknesses such as high computation cost, low robustness to uncertainties, etc. In this paper, a novel lane changing control method is proposed, where lane-changing behavior is analogized to parallel parking behavior. In the perspective of host vehicle with lane-changing intention, the space between vehicles in the target adjacent lane can be regarded as dynamic parking space. A decision making and path planning algorithm of parallel parking is adapted to deal with lane change condition. The adopted algorithm based on rules checks lane-changing feasibility and generates desired path in the moving reference system at the same speed of vehicles in target lane.
Technical Paper

Super-Twisting Second-Order Sliding Mode Control for Automated Drifting of Distributed Electric Vehicles

2020-04-14
2020-01-0209
Studying drifting dynamics and control could extend the usable state-space beyond handling limits and maximize the potential safety benefits of autonomous vehicles. Distributed electric vehicles provide more possibilities for drifting control with better grip and larger maximum drift angle. Under the state of drifting, the distributed electric vehicle is a typical nonlinear over-actuated system with actuator redundancy, and the coupling of input vectors impedes the direct use of control algorithm of upper. This paper proposes a novel automated drifting controller for the distributed electric vehicle. First, the nonlinear over-actuated system, comprised of driving system, braking system and steering system, is formulated and transformed to a square system through proposed integrative recombination method of control channel, making general nonlinear control algorithms suitable for this system.
Technical Paper

Research on Assist-Steering Method for Distributed-Drive Articulated Heavy Vehicle Based on the Co-Simulation Model

2020-04-14
2020-01-0761
The mathematic model and co-simulation model for distributed-drive articulated heavy vehicles (DAHVs) are developed along with the techniques for its satisfactory verification. The objectives of this paper are to introduce and verify the researches about the assist-steering method for DAHVs. The theory of this proposed assist-steering method in this paper distinguishes it from the traditional direct yaw moment control (DYC) method or assist-steering methods in the previous studies. Furthermore, the co-simulation model developed by MATLAB/Simulink, ADAMS, and AMESim is more reasonable than the traditional methods with simple virtual models, which can replace the real test vehicle for the verification of proposed assist-steering method. Field tests were conducted with a 35t DAHV to verify the models with the comparison of vehicle responses.
Technical Paper

Tire Force Fast Estimation Method for Vehicle Dynamics Stability Real Time Control

2007-10-30
2007-01-4244
A tire force estimation algorithm is proposed for vehicle dynamic stability control (DSC) system to protect the vehicle from deviation of the normal dynamics attitude and to realize the improved dynamics stability in limited driving conditions. The developed algorithm is based on the theoretical analysis of all the subsystems of the active brake control in DSC system and modulation in DSC, and the robustness is achieved by a compensation method using nonlinear filter in the real time control. The software-in-loop simulation using Matlab/AMEsim and the ground test in the real car show the validation of this method.
Technical Paper

Coordinating Control Oriented Research on Algorithm of Engine Torque Estimation for Parallel Hybrid Electric Powertrain System

2004-03-08
2004-01-0424
The internal combustion engine and motor should be controlled coordinately to meet the demand of smooth power transfer and good drivability especially during transient conditions for parallel hybrid powertrain system. This paper presents the essential technology of how to estimate the engine torque by the measurement and processing of instantaneous crankshaft speed. One multi-injection gasoline engine and one turbocharged diesel engine are selected to manifest the algorithm of engine torque estimation and the experiments show fairly good results for both engines. Consequently an engine torque sensor can be easily calibrated and applied to feedback engine torque in coordinating control.
Technical Paper

Mathematical Modeling of Vehicle Fuel Cell Power System Thermal Management

2003-03-03
2003-01-1146
A mathematical model of vehicle fuel cell system thermal management has been developed to investigate the effects of various design and operating conditions on the thermal management and to understand the underlying mechanism. The fuel cell stack structure is represented by a lumped thermal mass model, which has the heat transfer and pressure loss characteristics of the fuel cell stack structure. The whole thermal management system is discretized into many volumes, where each flowspit is represented by a single volume, and every pipe is divided into one or more volumes. These volumes are connected by boundaries. The model is solved numerically to analyze thermal management system performance. The effects of coolant flow rates and air flow rates on the system thermal performance, the stack thermal capacity on the transient thermal performance have been investigated in detail.
Technical Paper

A New Method to Accelerate Road Test Simulation on Multi-Axial Test Rig

2017-03-28
2017-01-0200
Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
Technical Paper

Regenerative Brake-by-Wire System Development and Hardware-In-Loop Test for Autonomous Electrified Vehicle

2017-03-28
2017-01-0401
As the essential of future driver assistance system, brake-by-wire system is capable of performing autonomous intervention to enhance vehicle safety significantly. Regenerative braking is the most effective technology of improving energy consumption of electrified vehicle. A novel brake-by-wire system scheme with integrated functions of active braking and regenerative braking, is proposed in this paper. Four pressure-difference-limit valves are added to conventional four-channel brake structure to fulfill more precise pressure modulation. Four independent isolating valves are adopted to cut off connections between brake pedal and wheel cylinders. Two stroke simulators are equipped to imitate conventional brake pedal feel. The operation principles of newly developed system are analyzed minutely according to different working modes. High fidelity models of subsystems are built in commercial software MATLAB and AMESim respectively.
Technical Paper

Simulations on Special Structure ISG Motor Used for Hybrid Electrical Vehicles Aimed at Active Damping

2017-03-28
2017-01-1123
Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
Journal Article

An Efficient Path Planning Methodology Based on the Starting Region Selection

2020-04-14
2020-01-0118
Automated parking is an efficient way to solve parking difficulties and path planning is of great concern for parking maneuvers [1]. Meanwhile, the starting region of path planning greatly affects the parking process and efficiency. The present research of the starting region are mostly determined based on a single algorithm, which limits the flexibility and efficiency of planning feasible paths. This paper, taking parallel parking and vertical parking for example, proposes a method to calculate the starting region and select the most suitable path planning algorithm for parking, which can improve the parking efficiency and reduce the complexity. The collision situations of each path planning algorithm are analyzed under collision-free conditions based on parallel and vertical parking. The starting region for each algorithm can then be calculated under collision-free conditions.
Technical Paper

Road Rough Estimation for Autonomous Vehicle Based on Adaptive Unscented Kalman Filter Integrated with Minimum Model Error Criterion

2022-03-29
2022-01-0071
The accuracy of road input identifiaction for autonomous vehicles (AVs) system, especially in state-based AVs control for improving road handling and ride comfort, is a challenging task for the intelligent transport system. Due to the high fatality rate caused by inaccurate state-based control algorithm, how to precisely and effectively acquire road rough information and chose the reasonable road-based control algorithm become a hot topic in both academia and industry. Uncertainty is unavoidable for AVs system, e.g., varying center of gravity (C.G.) of sprung mass, controllable suspension damping force or variable spring stiffness. To tackle the above mentioned, this paper develops a novel observer approach, which combines unscented Kalman filter (UKF) and Minimum Model Error (MME) theory, to optimize the estimation accuracy of the road rough for AVs system. A full-car nonlinear model and road profile model are first established.
Technical Paper

High-Power Synchronous Rectification Drive Power System Based on PID Control

2022-03-29
2022-01-0720
The driving power system can be combined with lasers, lights, etc., and applied to automobiles to achieve various functions. Under the general trend of the development of intelligent vehicles, people have higher and higher requirements for the accuracy and power of various equipment. However, as power increases, how to ensure the stability of factors such as current is a challenging problem. Therefore, it is extremely important to study and design a high-power drive system in this paper, so as to ensure a stable output of the current. The system is composed of power supply, load, secondary power supply and control chip. The choice of power supply and load is conventional model. The secondary power supply adopts step-down circuit, with synchronous rectifier chip, which can effectively reduce energy consumption, and with temperature protection device, which can ensure the safe and reliable operation of equipment.
Technical Paper

Path-Tracking Control and Following Control of Tractor-Semitrailer Combination Based on Improved MPC

2023-04-11
2023-01-0695
In recent years, the tractor-semitrailer combination has become the primary vehicle of China's long-distance freight system. In this paper, with the aim of optimizing the path tracking control and following control of the tractor-semitrailer combination, a kinematics-based path tracking control scheme is proposed. Firstly, a kinematic model of the tractor-semitrailer combination has been constructed. The control of the tractor-semitrailer combination is simplified to focus on three control points based on the kinematics model. Secondly, the path tracking control algorithm and the following control algorithm of the tractor-semitrailer combination are proposed in this paper. The improved MPC is used for path-tracking control of tractor-semitrailer combinations. The cost function of rolling optimization steps is intended, and the optimal line is determined with the lateral deviation, the variation of lateral error, and the deviation of heading angle as the input.
Technical Paper

Energetic Macroscopic Representation Based Energy Management Strategy for Hybrid Electric Vehicle Taking into Account Demand Power Optimization

2017-10-08
2017-01-2208
To further explore the potential of fuel economy for hybrid electric vehicle (HEV), a methodology of demand power optimization is proposed. The fuel consumption depends not only on the EMS, but also on the way to operate vehicle. A control strategy to adjust driver’s demand before power splitting is necessary. To get accurate and reliable control strategy, two aspects are the most important. First, a rigorous and organized modeling approach is a base to describe complicated powertrain system of HEV. The energetic macroscopic representation (EMR) is a graphical synthetic description of electromechanical conversion system based on energy flow. A powertrain architecture of HEV is described explicitly via the EMR. Second, the effectiveness of EMS and the reasonability of driving operations are vital.
Technical Paper

The Influence of Passive Elements on STATCOM Performance

1999-08-02
1999-01-2644
As important members of the STATCOM (Static Synchronous Compensator), the passive elements play an indispensable role in the transient and steady state performance of STATCOM. The harmonics resonant phenomena have been pointed out in some papers. However from the engineering design point of view, a more detailed investigation should be conducted to give an insight into the effects of passive parameter selection on the system performance. Based on the experience in developing STATCOM, the authors proposed a modified mathematical model in a per-unit system as the base of parameter evaluation. With the proposed model, the authors analyze the influence of the per-unit passive parameters on the performance of STATCOM systematically. Simplified algebraic expressions for the magnitudes of the harmonic current as well as the dc voltage regarding the particular harmonics are derived, which can be used as an indication of the preference for the passive elements.
Technical Paper

Effect of Ash on Gasoline Particulate Filter Using an Accelerated Ash Loading Method

2018-04-03
2018-01-1258
Gasoline particulate filter (GPF) is considered a suitable solution to meet the increasingly stringent particle number (PN) regulations for both gasoline direct injection (GDI) and multi-port fuel injection (MPI) engines. Generally, GDI engines emit more particulate matter (PM) and PN. In recent years, GDI engines have gained significant market penetration in the automobile industry owing to better fuel economy and drivability. In this study, an accelerated ash loading method was tested by doping lubricating oil into the fuel for a GDI engine. Emission tests were performed at different ash loads with different driving cycles and GPF combinations. The results showed that the GPF could significantly reduce particle emissions to meet the China 6 regulation. With further ash loading, the filtration efficiency increased above 99% and the effects on fuel consumption and backpressure were found to be limited, even with an ash loading of up to 50 g/l.
Technical Paper

Numerical Analysis on the Potential of Reducing DPF Size Using Low Ash Lubricant Oil

2018-09-10
2018-01-1760
Diesel particulate filter (DPF) is necessary for diesel engines to meet the increasingly stringent emission regulations. Many studies have demonstrated that the lubricant derived ash has a significant effect on DPF pressure drop and engine fuel economy, and this effect becomes more and more severe with the increasing of operating hours of the DPF because the ash accumulated in the DPF cannot be removed by regeneration. It is reported that most of the DPFs operated with more ash than soot in the filter for more than three quarters of the time during its lifetime [1]. In order to mitigate this problem, the original engine manufacturers (OEM) tend to use an oversized DPF for the engine. However, it will increase the costs of the DPF and reduce the compactness of the engine aftertreatment system.
Technical Paper

Investigation on Ignition of a Single Lubricating Oil Droplet in Premixed Combustible Mixture at Engine-Relevant Conditions

2019-04-02
2019-01-0298
The ignition of lubricating oil droplet has been proved to be the main factor for pre-ignition and the following super-knock in turbocharged gasoline direct injection engine. In this paper, the ignition process of lubricating oil droplet in combustible ambient gaseous mixture was investigated in a rapid compression machine (RCM). The pre-ignition induction by oil droplet of the ambient gaseous mixture was analyzed under different initial droplet volume and effective temperature conditions. The oil droplet was suspended on a tungsten fiber in the combustion chamber and the ignition process was recorded by a high-speed camera through the quartz window mounted at the end of the combustion chamber. The pressure traces were also obtained by a sensor in order to get the ignition delay and analyze the combustion process in detail.
X