Refine Your Search

Topic

Author

Search Results

Journal Article

Characterization of Metal Foil in Anisotropic Fracture Behavior with Dynamic Tests

2018-04-03
2018-01-0108
Metal foil is a widely used material in the automobile industry, which not only is the honeycomb barrier material but is also used as current collectors in Li-ion batteries. Plenty of studies proved that the mechanical property of the metal foil is quite different from that of the metal sheet because of the size effect on microscopic scale, as the metal foil shows a larger fracture stress and a lower ductility than the metal sheet. Meanwhile, the fracture behavior and accurate constitutive model of the metal foil with the consideration of the strain rate effect are widely concerned in further studies of battery safety and the honeycomb. This article conducted experiments on 8011H18 aluminum foil, aiming to explore the quasi-static and dynamic tension testing method and the anisotropic mechanical behavior of the very thin foil. Two metal foil dog-bone specimens and three types of notched specimens were tested with a strain rate ranging from 2 × 10−4/s to 40/s and various stress states.
Technical Paper

Fault-Tolerant Control of Regenerative Braking System on In-Wheel Motors Driven Electric Vehicles

2020-04-14
2020-01-0994
A novel fault tolerant brake strategy for In-wheel motor driven electric vehicles based on integral sliding mode control and optimal online allocation is proposed in this paper. The braking force distribution and redistribution, which is achieved in online control allocation segment, aim at maximizing energy efficiency of the vehicle and isolating faulty actuators simultaneously. The In-wheel motor can generate both driving torque and braking torque according to different vehicle dynamic demands. In braking procedure, In-wheel motors generate electric braking torque to achieve energy regeneration. The strategy is designed to make sure that the stability of vehicle can be guaranteed which means vehicle can follow desired trajectory even if one of the driven motor has functional failure.
Technical Paper

Investigations of Lubricant Sludge Formation in the Field: Development of an Effective New Fleet Test Technique

1991-02-01
910748
A new field test procedure for evaluation of the sludge formation tendencies of lubricants has been developed. The procedure has the benefits of short running time, reduced variability, and dramatic separation of API SF vs API SG oils. This paper discusses development of the operational procedure and evaluation of four lubricants, including commercial-type API SF and API SG oils as well as experimental future oils. Significantly improved sludge ratings were obtained with an experimental API SG oil. The sludge formation process was studied using infrared spectroscopy, TAN, dielectric measurements, viscosity, quasielastic light scattering particle size, and transmission electron microscopy techniques. These analyses show production of contaminants which form insoluble particles that build up and precipitate out of suspension as sludge. Certain drain analyses can be used as tools for predicting field sludge deposition time.
Journal Article

Challenging Conventional Wisdom by Utilizing Group II Base Oils in Fuel Efficient Axle Oils

2017-10-08
2017-01-2356
Improving vehicle fuel economy is a major consideration for original equipment manufacturers (OEMs) and their technology suppliers worldwide as government legislation increasingly limits carbon dioxide emissions. At the same time that automotive OEMs have been driving toward lower viscosity axle oils to improve fuel economy, OEMs have worked to improved durability over an extended drain interval. These challenges have driven the use of API group III and/or API group IV base oils in most factory fill axle oils. This paper details the development of a novel lower viscosity SAE 75W-85 axle technology based on group II base oil that rivals the performance of a PAO-based axle oil and challenges the conventional wisdom of not using group II base oils in fuel efficient axle oils.
Journal Article

Development of a Novel Vehicle-Based Method to Assess the Impact of Lubricant Quality on Passenger Car Energy Efficiency

2012-09-10
2012-01-1619
The traditional vehicle-based approach to measuring the effect of oil-related fuel economy has relied on separate oil-aging and measurement processes where oil-aging takes place using an established driving protocol like the EPA Approved Mileage Accumulation (AMA) Driving Schedule for vehicle aging, then at set mileage intervals fuel economy is assessed using procedures such as the EPA FTP75 and Highway Fuel Economy emission test protocols described in 40 CFR, Parts 86 and 600. These test methods are useful for producing discrete snapshots of fuel economy at set mileage intervals but are unable to provide continuous information about oil-related changes in fuel economy. During the tests, the vehicle's fuel economy is indirectly calculated using a carbon-balance method of the bagged sample of dilute tailpipe emissions that effectively integrates the fuel economy of the vehicle during the sample interval which varies between eight and fifteen minutes.
Journal Article

Fuel Economy Beyond ILSAC GF-5: Correlation of Modern Engine Oil Tests to Real World Performance

2012-09-10
2012-01-1618
A host of bench and engine tests have historically been used by formulators to assess fuel economy when developing engine oils for gasoline-powered passenger cars and light trucks. Some of these methods assess basic lubricant physical properties such as hydrodynamic, boundary and thin-film friction, and are useful for quickly screening experimental components and formulations. Some methods assess rotational drag of a motored engine and offer insights into the friction of various engine parts. Still other methods directly measure the energy consumption in a test engine running in a research laboratory and thus come the closest to simulating a consumer-operated vehicle. Each test method has inherent limitations and is based on underlying assumptions, producing artifacts that must first be understood and then analyzed for relevance to either industry lubricant specifications or real world fuel economy performance.
Technical Paper

Development of a Laboratory Hypoid Gear Spalling Test

1997-11-17
973252
The laboratory tests used to define API GL5 have been the cornerstone of gear oil development for well over thirty years. In that time they have served the market very well. Lubricants developed with these test methods have provided adequate protection of axle components from severe wear, scuffing, corrosion, and oxidation. Recently, however, there has been an increasing trend toward extended drain intervals which changes the picture. Coupled with longer oil drain intervals there is a continuing increase of power throughput in the equipment. The combination of increased power and extended service life places significant stress on the oil such that the load carrying ability and thermal and oxidative stability could be greatly diminished under these conditions. During the past ten years the industry has been actively working toward a new gear oil specification that will address the performance needs of today's vehicles.
Technical Paper

Control System Development for the Diesel APU in Off-Road Hybrid Electric Vehicle

2007-10-30
2007-01-4209
This paper developed a control system for the auxiliary power unit (APU) in off-road series hybrid electric special vehicle. A control system configuration was designed according to the requirements of the high voltage system in series hybrid electric special vehicle. Then optimal engine operating areas were defined. A gain scheduling engine speed PI controller was designed based on these areas. A closed loop voltage regulator was designed for the synchronous generator. The proposed control system was first validated on an APU control test bench. The test results showed the control system guaranteed the diesel APU good dynamic response characteristics while remaining stable output voltage. Finally, the APU control system was implemented on a diesel APU in an off-road series hybrid electric vehicle and a road test was conducted. The road test results showed the APU control system promised good performance in both vehicle dynamics and vehicle high voltage system.
Technical Paper

Potential Fuel Consumption Improvement Analysis for Integrated Starter Generator System Base on the New European Drive-cycle

2008-06-23
2008-01-1570
A conventional vehicle with gasoline engine was tested on a chassis dynamometer over the new European drive-cycle (NEDC). The distributions of the engine speed and power, the throttle positions during the drive cycle are analyzed. Engine idling, acceleration and deceleration take an important proportion in the drive cycle. If engine idling is instead by engine stop, the fuel consumption will be improved by 2.27%. In an Integrated Starter Generator (ISG) system, with the assist of the starter/generator, transient operation of the engine will decrease, which reduces fuel consumption by 6%. Fuel economy will be also improved by braking regeneration and restricting operating points to an optimized region, the details are not discussed in this paper. To reduce fuel consumption further, the region where engine usually runs in urban traffic, should be paid more attention to while engine calibration.
Technical Paper

A New Method to Accelerate Road Test Simulation on Multi-Axial Test Rig

2017-03-28
2017-01-0200
Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
Technical Paper

Development of Model Based Closed Loop Control Strategy of SCR System for Heavy-Duty Diesel Engines

2017-10-08
2017-01-2383
Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
Technical Paper

Anatomy of an L-37 Hypoid Gear Durability Test Ridging Failure

2012-09-10
2012-01-1669
The ASTM D6121 (L-37) is a key hypoid gear lubricant durability test for ASTM D7450-08 (API Category GL-5) and the higher performance level SAE J2360. It is defined as the ‘Standard Test Method for Evaluation of Load-Carrying Capacity of Lubricants Under Conditions of Low Speed and High Torque Used for Final Hypoid Drive Axles’. Pass/fail is determined upon completion of the test by rating the pinion and ring gears for several types of surface distress, including wear, rippling, ridging, pitting, spalling and scoring. Passing the L-37 in addition to the other tests required for API Category GL-5 credentials, as well as the more strenuous SAE J2360 certification, requires in-depth formulating knowledge to appropriately balance the additive chemistry. This paper describes the results of ASTM D6121 experiments run for the purposes of better understanding gear oil durability.
Technical Paper

Development of Heavy Duty Diesel Real World Drive Cycles for Fuel Economy Measurements

2013-10-14
2013-01-2568
Over several years, a fuel economy test measurement technique has been developed to highlight the magnitude of benefits expected in real world applications of different heavy-duty vehicle (HDV) engine oils in an operating vehicle. This method provides discriminatory results using an alternative to the widely used gravimetric fuel measurement methodology of Brake Specific Fuel Consumption (BSFC), in order to measure gains of <2% in a more repeatable manner. For the results to prove meaningful to the wider commercial audience, such as vehicle operators, original equipment manufacturers and oil providers, the systemic test vehicle operating conditions need to closely represent on-road conditions experienced on a daily basis by long haul, heavy duty diesel vehicles. This paper describes the parameters, necessary measures and methodologies required to record real world data and create representative proving ground test cycles.
Technical Paper

In-Situ Measurement of Holistic Powertrain Efficiency in Vehicles

2018-04-03
2018-01-0324
Conventional methods for determining automotive powertrain efficiency include (1) component-level testing, such as engine dynamometer, transmission stand or axle stand testing, (2) simulations based on component level test data and (3) vehicle-level testing, such as chassis dynamometer or on-road testing. This paper focuses on vehicle-level testing to show where energy is lost throughout a complete vehicle powertrain. This approach captures all physical effects of a vehicle driving in real-world conditions, including torque converter lockup strategies, transmission shifting, engine control strategies and inherent mechanical efficiency of the components. A modern rear-wheel drive light duty pickup truck was instrumented and tested on a chassis dynamometer. Power was measured at the engine crankshaft output, the rear driveshaft and at the dynamometer.
Technical Paper

Test Techniques for the Evaluation of Lubricant Effects on Axle Break-In Temperature-Investigation of Test Techniques with a Domestic (USA) Sedan

1976-02-01
760328
High lubricant temperatures generated during the break-in of new differential assemblies has been of concern among original equipment manufacturers (OEM's). Many tests have been devised to measure the effects of speed, load and lubricant on the temperature generated in the axle. The major problem confronting the use of these tests has been a lack of repeatability and/or reproducibility. Recently, a European OEM axle lubricant break-in test procedure using a European sedan test vehicle has demonstrated highly repeatable and reproducible results. Test work had been limited to the European sedan. The applicability of the European OEM test procedure to a larger domestic U.S. vehicle was questioned. This paper discusses the applicability of the European test to a domestic sedan. Additionally, two other axle break-in test procedures were conducted using the same domestic sedan test vehicle. Three sulfur-phosphorus multi-purpose gear lubricants were evaluated.
Technical Paper

Testing Wet Clutch Systems for Anti-Shudder Performance

2020-04-14
2020-01-0560
The wet clutch system (WCS) is a complex combination of friction plates, separator plates and fluid (lubricant). The basic function of the WCS is to transfer torque under various operating conditions such as slipping, shifting, start/launch and/or torque converter clutch (TCC) operation. Under these conditions the slope of the coefficient of friction (μ or COF) versus slip speed (μ-v) curve must be positive to prevent shudder of the WCS, a highly undesirable condition in the lubricated friction system. An extended durability duty cycle test procedure is required to evaluate the WCS during which the μ-v curve is monitored for a negative slope, a condition indicating the potential for shudder. The friction plates, separator plates, and lubricant must be tested together and remain together during the test to be properly evaluated as a WCS.
Technical Paper

Road Rough Estimation for Autonomous Vehicle Based on Adaptive Unscented Kalman Filter Integrated with Minimum Model Error Criterion

2022-03-29
2022-01-0071
The accuracy of road input identifiaction for autonomous vehicles (AVs) system, especially in state-based AVs control for improving road handling and ride comfort, is a challenging task for the intelligent transport system. Due to the high fatality rate caused by inaccurate state-based control algorithm, how to precisely and effectively acquire road rough information and chose the reasonable road-based control algorithm become a hot topic in both academia and industry. Uncertainty is unavoidable for AVs system, e.g., varying center of gravity (C.G.) of sprung mass, controllable suspension damping force or variable spring stiffness. To tackle the above mentioned, this paper develops a novel observer approach, which combines unscented Kalman filter (UKF) and Minimum Model Error (MME) theory, to optimize the estimation accuracy of the road rough for AVs system. A full-car nonlinear model and road profile model are first established.
Technical Paper

Architecture of iBus: A Self-Driving Bus for Public Roads

2017-03-28
2017-01-0067
Safety of buses is crucial because of the large proportion of the public transportation sector they constitute. To improve bus safety levels, especially to avoid driver error, which is a key factor in traffic accidents, we designed and implemented an intelligent bus called iBus. A robust system architecture is crucial to iBus. Thus, in this paper, a novel self-driving system architecture with improved robustness, such as to failure of hardware (including sensors and controllers), is proposed. Unlike other self-driving vehicles that operate either in manual driving mode or in self-driving mode, iBus offers a dual-control mode. More specifically, an online hot standby mechanism is incorporated to enhance the reliability of the control system, and a software monitor is implemented to ensure that all software modules function appropriately. The results of real-world road tests conducted to validate the feasibility of the overall system confirm that iBus is reliable and robust.
Technical Paper

Injection Rate Control in Electronic in-line Pump-Valve-Pipe-Injector Diesel Injection System

1999-03-01
1999-01-0201
Injection rate control is considered as an effective way to optimize diesel combustion process, decrease emission and improve fuel economy. There are many injection rate shaping devices, but most of them still suffer from structure complexity and parameter sensitivity which limit their effectiveness and practicality. A new initial injection rate control method in solenoid-controlled diesel injection systems is introduced in this paper. The basic idea of this method is to maintain a small spill passage between plunger chamber and inlet port during initial injection period. The initial injection rate can be regulated by changing the closing timing of the solenoid-controlled spill valve. This method has the advantages of simple construction, flexible adjustment and stable performance. Computer aided analysis and design based on a simulation program of the system is conducted to compare and select the sizes of the small spill passage according to their effect on injection characteristics.
Technical Paper

Effect of Ash on Gasoline Particulate Filter Using an Accelerated Ash Loading Method

2018-04-03
2018-01-1258
Gasoline particulate filter (GPF) is considered a suitable solution to meet the increasingly stringent particle number (PN) regulations for both gasoline direct injection (GDI) and multi-port fuel injection (MPI) engines. Generally, GDI engines emit more particulate matter (PM) and PN. In recent years, GDI engines have gained significant market penetration in the automobile industry owing to better fuel economy and drivability. In this study, an accelerated ash loading method was tested by doping lubricating oil into the fuel for a GDI engine. Emission tests were performed at different ash loads with different driving cycles and GPF combinations. The results showed that the GPF could significantly reduce particle emissions to meet the China 6 regulation. With further ash loading, the filtration efficiency increased above 99% and the effects on fuel consumption and backpressure were found to be limited, even with an ash loading of up to 50 g/l.
X