Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Hardware-in-the-Loop Simulator for Vehicle Adaptive Cruise Control Systems by Using xPC Target

2007-08-05
2007-01-3596
A HIL simulator for developing vehicle adaptive cruise control systems is presented in this paper. The xPC target is used to establish real-time simulation environment. The simulator is composed of a virtual vehicle model, real components of an ACC system like ECU, electronic throttle and braking modulator, a user interface to facilitate simulation, and brake and accelerator pedals to make interactive driver inputs easier. The vehicle model is validated against data from field test. Tests of an ACC controller in the real-time are conducted on the simulator.
Technical Paper

Control System Design for Variable Nozzle Turbocharger

2009-06-11
2009-01-1668
The electronic control system of the variable nozzle turbocharger (VNT) was designed. The actuator is the electro-hydraulic servo proportional solenoid. The signals of the engine pedal position sensor, the engine speed sensor, the boost pressure sensor, the intake air temperature sensor, and the ambient pressure sensor are sampled and filtered. The engine working condition is estimated. The control algorithm was designed as the closed-loop feedback digital PI control together with the open-loop feed forward control. The gain-scheduled PI control method is applied to improve the robustness. The control system was calibrated at the turbocharger test bench and the engine test bench. The results indicate the designed control system has good performance for the boost pressure control under the steady and transient conditions.
Technical Paper

Fuel Economy Analysis of Periodic Cruise Control Strategies for Power-Split HEVs at Medium and Low Speed

2018-04-03
2018-01-0871
Hybridization of vehicles is considered as the most promising technology for automakers and researchers, facing the challenge of optimizing both the fuel economy and emission of the road transport. Extensive studies have been performed on power-split hybrid electric vehicles (PS-HEVs). Despite of the fact that their excellent fuel economy performance in city driving conditions has been witnessed, a bottle neck for further improving the fuel economy of PS-HEVs has been encountered due to the inherent engine-generator-motor power circulation of the power-split system under medium-low speed cruising scenarios. Due to the special mechanical constraints of the power-split device (PSD), the conventional periodic cruising strategy like Pulse and Glide cannot be applied to PS-HEVs directly.
Technical Paper

Feature Oriented Optimal Sensor Selection and Arrangement for Perception Sensing System in Automated Driving

2022-12-22
2022-01-7104
The recent proliferation of perception sensing and computing technologies has promoted the rapid development of automated driving. The design of the perception sensing system has nonnegligible influences both on the performances of various automated driving features and on the system costs. This paper proposes an automated driving feature oriented framework for automatic selection and arrangement of the sensors in the perception sensing system. An automated driving feature oriented optimization model is built considering the characteristics and requirements of the specific feature and a genetic algorithm based design method is provided to solve this optimization model. Furthermore, the Adaptive Cruise Control feature and the Automated Parking Assistance feature are selected as the simulation cases to verify the effectiveness of the proposed method.
Technical Paper

Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning

2022-03-31
2022-01-7014
This work presents a multi-objective adaptive cruise control (ACC) system via deep reinforcement learning (DRL). During the control period, it quantitatively considers three indexes: tracking accuracy, riding comfort, and fuel economy. The system balances contradictions between different indexes to achieve the best overall control results. First, a hierarchical control architecture is utilized, where the upper level controller is synthesized under DRL framework to give out the vehicle desired acceleration. The lower level controller executes the command and compensates vehicle dynamics. Then, four state variables that can comprehensively determine the car-following states are selected for better convergence. Multi-objective reward function is quantitatively designed referring to the evaluation indexes, in which safety constraints are considered by adding violation penalty. Thereafter, the training environment which excludes the disturbance of preceding car acceleration is built.
Technical Paper

Collaborative Control for Intelligent Motorcade Systems: State Transformation, Adaptive Robustness and Stability

2022-12-22
2022-01-7069
The intelligent unmanned ground vehicle (UGV) motorcade system consisting of one leader and n − 1 followers is considered. The safety distance between the front and rear UGVs is treated as the control target. Since the safety distance constraint is a unilateral constraint, the state transformation is needed. Hence, a piecewise type conversion function is formulated to serve for the transformation of the original inequality constraint. The system equation is further expressed by the new state. We assume that the input of the leading UGV is known. Combined with the uncertainty evaluation, a class of collaborative controls for the following UGVs is proposed to deal with the uncertainty with unknown bound. The effectiveness of the designed control is verified by both Lyapunov stability theory and simulations. Both theoretical and simulation results illustrate that the longitudinal safety, stability and global behavior of the intelligent motorcade system are guaranteed.
Technical Paper

Integrated Road Information Perception Framework for Road Type Recognition and Adaptive Evenness Assessment

2024-04-09
2024-01-2041
With the rapid advancement in intelligent vehicle technologies, comprehensive environmental perception has become crucial for achieving higher levels of autonomous driving. Among various perception tasks, monitoring road types and evenness is particularly significant. Different road categories imply varied surface adhesion coefficients, and the evenness of the road reflects distinct physical properties of the road surface. This paper introduces a two-stage road perception framework. Initially, the framework undergoes pre-training on a large annotated drivable area dataset, acquiring a set of pre-trained parameters with robust generalization capabilities, thereby endowing the model with the ability to locate road areas in complex regions.
X