Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

An Elementary Simulation of Vibration Isolation Characteristics of Hydraulically Damped Rubber Mount of Car Engine

2001-04-30
2001-01-1453
Hydraulically damped rubber engine mounts (HDM) are an effective means of providing sufficient isolation from engine vibration while also providing significant damping to control the rigid body motions of the engine during normal driving conditions. This results in a system which exhibits a high degree of non-linearity in terms of both frequency and amplitude. The numerical simulation of vibration isolation characteristics of HDM is difficult due to the fluid-structure interaction between the main supporting rubber and fluid in chambers, the nonlinear material properties, the large deformation of rubber parts, structure contact problems among the inner parts, and the turbulent flow in the inertia track. In this paper an integrated numerical simulation analysis based on structural FEM and a lumped-parameter model of HDM is carried out.
Technical Paper

A Numerical Simulation of Turbulent Mixing in Transient Spray by LES (Comparison between Numerical and Experimental Results of Transient Particle Laden Jets)

2004-06-08
2004-01-2014
The purpose of this study is to investigate the turbulent mixing in a diesel spray by large eddy simulation (LES). As the first step for the numerical simulation of diesel spray by LES, the LES of transient circular gas jets and particle laden jets were conducted. The simulation of transient circular jets in cylindrical coordinates has numerical instability near the central axis. To reduce the instability of calculation, azimuthal velocity around the central axis is calculated by the linear interpolation and filter width around the axis is modified to the radial or axial grid scale level. A transient circular gas jet was calculated by the modified code and the computational results were compared with experimental results with a Reynolds number of about 13000. The computational results of mean velocity and turbulent intensity agreed with experimental results for z/D>10. Predicted tip penetration of the jet also agreed to experimental data.
Technical Paper

Incompressible Flow Computations Around Vehicle Bodies Using Unstructured Hybrid Grids

2002-03-04
2002-01-0598
A hybrid unstructured Navier-Stokes method is presented for the simulation of the incompressible turbulent flows around vehicle bodies. The hybrid grid system is composed of a structured or semistructured grid for the near-wall viscous region, and an unstructured grid for the remainder of the computational domain. By using prismatic cells, the number of cells in the boundary-layer region becomes approximately one-third of the tetrahedral grid. And the laminated grid rather than the tetrahedral grid is more suitable in the boundary-layer region for accurately computing the viscous terms. The incompressible Navier-Stokes equations are solved on the hybrid grid by a cell-vertex, central differencing finite volume method. The numerical accuracy of the present method is discussed by comparing with the experimental data for the cases of flows around a car model at different ground clearances.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

2013-10-14
2013-01-2634
In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.
Technical Paper

Numerical Simulation of Turbulent Mixing in a Transient Jet

1993-10-01
932657
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
Technical Paper

Numerical Simulation of Turbulent Dispersion of Fuel Droplets in an Unsteady Spray via Discrete Vortex Method

1995-10-01
952433
The turbulent dispersion of particles in an unsteady two dimensional particle-laden jet was simulated by a discrete vortex method coupling with a model of gas/particles interaction. Numerical analysis of a spray yielded the distributions of vorticity, fuel mass concentration and local Sauter mean diameter (SMD) of droplets in a spray. The predicted distribution of local SMD of droplets in a spray demonstrated that the size of droplets in the spray periphery is larger than that of droplets in the center region of spray. This trend of distribution of drop size coincided with that of measured one. The predicted distributions of drop size and vorticity revealed that the larger droplets are easily centrifuged to the periphery of the spray. The effects of the pattern of injection rate on the mixing process in a transient spray were also investigated.
Technical Paper

A DNS Study on Global and Local Flame Structures In Thin Reaction Zones

2015-09-01
2015-01-1909
Three-dimensional direct numerical simulations of methane-air turbulent premixed flame propagating in homogenous isotropic turbulence are conducted to investigate local and global flame structure in thin reaction zones. GRI-Mech 3.0 is used to represent methane-air reactions. The equivalence ratio of unburned mixture is 0.6 and 1.0. For a better understanding of the local flame structure in thin reaction zones, distributions of mass fractions of major species, heat release rate and temperature are investigated. To clarify effects of turbulence on the local and global flame structures, the statistical characteristics of flame elements are also revealed.
Technical Paper

A 3D DNS Investigation on the Flame-Wall Interactions and Heat Loss in a Constant Volume Vessel

2015-09-01
2015-01-1910
A direct numerical simulation of turbulent premixed flames in a constant volume vessel is conducted to understand flame-wall interactions and heat loss characteristics under the pressure rising condition. The contribution of the burnt region to the total heat flux is more significant compared to the reaction region. The velocity profiles indicate inward and outward motions. The profile of the turbulent kinetic energy is damped by the wall, and no distinct turbulence production is observed. Since the turbulence is weakened in the burnt region, the effect of near wall turbulence to the total wall heat flux is considered to be limited.
Technical Paper

A Cycle-to-Cycle Variation Extraction Method for Flow Field Analysis in SI IC Engines Based on Turbulence Scales

2019-01-15
2019-01-0042
To adhere to stringent environmental regulations, SI (spark ignition) engines are required to achieve higher thermal efficiency. In recent years, EGR (exhaust gas recirculation) systems and lean-burn operation has been recognized as key technologies. Under such operating conditions, reducing CCV (cycle-to-cycle variation) in combustion is critical to the enhancement of overall engine performance. Flow-field CCV is one of the considerable factors affecting combustion in engines. Conventionally, in research on flow fields in SI engines, the ensemble average is used to separate the measured velocity field into a mean component and a fluctuation component, the latter of which contains a CCV component and a turbulent component. To extract the CCV of the flow field, previous studies employed spatial filter, temporal filter, and POD (proper orthogonal decomposition) methods.
X