Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Hydrogen SI and HCCI Combustion in a Direct-Injection Optical Engine

2009-06-15
2009-01-1921
Hydrogen has been largely proposed as a possible alternative fuel for internal combustion engines. Its wide flammability range allows higher engine efficiency with leaner operation than conventional fuels, for both reduced toxic emissions and no CO2 gases. Independently, Homogenous Charge Compression Ignition (HCCI) also allows higher thermal efficiency and lower fuel consumption with reduced NOX emissions when compared to Spark-Ignition (SI) engine operation. For HCCI combustion, a mixture of air and fuel is supplied to the cylinder and autoignition occurs from compression; engine is operated throttle-less and load is controlled by the quality of the mixture, avoiding the large fluid-dynamic losses in the intake manifold of SI engines. HCCI can be induced and controlled by varying the mixture temperature, either by Exhaust Gas Recirculation (EGR) or intake air pre-heating.
Journal Article

Large Eddy Simulation of an n-Heptane Spray Flame with Dynamic Adaptive Chemistry under Different Oxygen Concentrations

2015-04-14
2015-01-0400
Detailed chemical kinetics is essential for accurate prediction of combustion performance as well as emissions in practical combustion engines. However, implementation of that is challenging. In this work, dynamic adaptive chemistry (DAC) is integrated into large eddy simulations (LES) of an n-heptane spray flame in a constant volume chamber (CVC) with realistic application conditions. DAC accelerates the time integration of the governing ordinary differential equations (ODEs) for chemical kinetics through the use of locally (spatially and temporally) valid skeletal mechanisms. Instantaneous flame structures and global combustion characteristics such as ignition delay time, flame lift-off length (LOL) and emissions are investigated to assess the effect of DAC on LES-DAC results. The study reveals that in LES-DAC simulations, the auto-ignition time and LOL obtain a well agreement with experiment data under different oxygen concentrations.
Technical Paper

Fuel Consumption and NOx Emission Prediction of Heavy-Duty Diesel Vehicles under Different Test Cycles and Their Sensitivities to Driving Factors

2020-09-15
2020-01-2002
Due to the rapid development of road infrastructure and vehicle population in China, the fuel consumption and emission of on-road vehicles tested in China World Transient Vehicle Cycle (C-WTVC) cannot indicate the real driving results. But the test results in China Heavy-duty Commercial Vehicle Test Cycle-Coach (CHTC-C) based on the road driving conditions in China are closer to the actual driving data. In this paper, the model for predicting the performance of heavy-duty vehicles is established and validated. The fuel consumption and NOx emission of a Euro VI heavy-duty coach under C-WTVC and CHTC-C tests are calculated by employing the developed model. Furthermore, the fuel consumption of the test coach is optimized and its sensitivity to the driving factors is analyzed.
Technical Paper

Optimization of Piston Bowl Geometry for a Low Emission Heavy-Duty Diesel Engine

2020-09-15
2020-01-2056
A computational fluid dynamics (CFD) guided design optimization was conducted for the piston bowl geometry for a heavy-duty diesel engine. The optimization goal was to minimize engine-out NOx emissions without sacrificing engine peak power and thermal efficiency. The CFD model was validated with experiments and the combustion system optimization was conducted under three selected operating conditions representing low speed, maximum torque, and rated power. A hundred piston bowl shapes were generated, of which 32 shapes with 3 spray angles for each shape were numerically analyzed and one optimized design of piston bowl geometry with spray angle was selected. On average, the optimized combustion system decreased nitrogen oxide (NOx) emissions by 17% and soot emissions by 41% without compromising maximum engine power and fuel economy.
Journal Article

Numerical Modelling of the In-Nozzle Flow of a Diesel Injector with Moving Needle during and after the End of a Full Injection Event

2015-09-06
2015-24-2472
The design of a Diesel injector is a key factor in achieving higher engine efficiency. The injector's fuel atomisation characteristics are also critical for minimising toxic emissions such as unburnt Hydrocarbons (HC). However, when developing injection systems, the small dimensions of the nozzle render optical experimental investigations very challenging under realistic engine conditions. Therefore, Computational Fluid Dynamics (CFD) can be used instead. For the present work, transient, Volume Of Fluid (VOF), multiphase simulations of the flow inside and immediately downstream of a real-size multi-hole nozzle were performed, during and after the injection event with a small air chamber coupled to the injector downstream of the nozzle exit. A Reynolds Averaged Navier-Stokes (RANS) approach was used to account for turbulence. Grid dependency studies were performed with 200k-1.5M cells.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Journal Article

Identification of True Stress-Strain Curve of Thermoplastic Polymers under Biaxial Tension

2016-04-05
2016-01-0514
This article is concerned with identification of true stress-strain curve under biaxial tension of thermoplastic polymers. A new type of biaxial tension attachment was embedded first in a universal material test machine, which is able to transform unidirectional loading of the test machine to biaxial loading on the specimen with constant velocity. Cruciform specimen geometry was optimized via FE modeling. Three methods of calculating true stress in biaxial tension tests were compared, based on incompressibility assumption, linear elastic theory and inverse engineering method, respectively. The inverse engineering method is more appropriate for thermoplastic polymers since it considers the practical volume change of the material during biaxial tension deformation. The strategy of data processing was established to obtain biaxial tension true stress-strain curves of different thermoplastic polymers.
Journal Article

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-04-05
2016-01-0775
Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Journal Article

Development of a Fast-Acting, Time-Resolved Gas Sampling System for Combustion and Fuels Analysis

2016-04-05
2016-01-0791
Development of new fuels and engine combustion strategies for future ultra-low emission engines requires a greater level of insight into the process of emissions formation than is afforded by the approach of engine exhaust measurement. The paper describes the development of an in-cylinder gas sampling system consisting of a fast-acting, percussion-based, poppet-type sampling valve, and a heated dilution tunnel; and the deployment of the system in a single cylinder engine. A control system was also developed for the sampling valve to allow gas samples to be extracted from the engine cylinder during combustion, at any desired crank angle in the engine cycle, while the valve motion was continuously monitored using a proximity sensor. The gas sampling system was utilised on a direct injection diesel engine co-combusting a range of hydrogen-diesel fuel and methane-diesel fuel mixtures.
Journal Article

Experimental Investigation of the Mechanical Behavior of Aluminum Adhesive Joints under Mixed-Mode Loading Conditions

2018-04-03
2018-01-0105
In recent years, structural adhesives have rapidly become the preferred alternative to resistance spot welding in fabricating stronger, lighter aluminum connections. Connections inevitably undergo and must withstand complex quasi-static and/or dynamic loads during their service life. Therefore, understanding how loading conditions affect the mechanical behavior of adhesive joints is vital to their design and the advancement of structural safety. Quasi-static and dynamic tests are performed to analyze both the strength and failure modes of aluminum 6062 substrates bonded by an adhesive (Darbond EP-1506) for an array of loading directions. An Arcan test device, which enables application of mixed-mode loads ranging from pure peel (mode I) to pure shear (mode II) to the adhesive layer, is employed in quasi-static testing. A self-designed medium-speed test machine is utilized to perform dynamic testing.
Technical Paper

Instantaneous PLII and OH* Chemiluminescence Study on Wide Distillation Fuels, PODEn and Ethanol Blends in a Constant Volume Vessel

2020-04-14
2020-01-0340
The combustion characteristics and soot emissions of three types of fuels were studied in a high pressure and temperature vessel. In order to achieve better volatility, proper cetane number and high oxygen content, the newly designed WDEP fuel was proposed and investigated. It is composed of wide distillation fuel (WD), PODE3-6 mixture (PODEn) and ethanol. For comparison, the test on WD and the mixture of PODEn-ethanol (EP) are also conducted. OH* chemiluminescence during the combustion was measured and instantaneous PLII was also applied to reveal the soot distribution. Abel transformation was adopted to calculate the total soot of axisymmetric flame. The results show that WDEP has similar ignition delays and flame lift-off lengths to those of WD at 870-920 K. But the initial ignition locations of WDEP flame in different cycles were more concentrated, particularly under the condition of low oxygen atmosphere.
Journal Article

Effect of the Molecular Structure of Individual Fatty Acid Alcohol Esters (Biodiesel) on the Formation of Nox and Particulate Matter in the Diesel Combustion Process

2008-06-23
2008-01-1578
Biodiesel is a renewable fuel which can be used as a direct replacement for fossil Diesel fuel as a calorific source in Diesel Engines. It consists of fatty acid mono-alkyl esters, which are produced by the trans-esterification reaction of plant oils with monohydric alcohols. The Plant oils and alcohols can both be derived from biomass, giving this fuel the potential for a sustainable carbon dioxide neutral life-cycle, which is an important quality with regard to avoiding the net emission of anthropogenic greenhouse gases. Depending on its fatty ester composition, Biodiesel can have varying physical and chemical properties which influence its combustion behaviour in a Diesel engine. It has been observed by many researchers that Biodiesel can sometimes lead to an increase in emissions of oxides of nitrogen (NOx) compared to fossil Diesel fuel, while emitting a lower amount of particulate mass.
Journal Article

The Fixed Points on the Nonlinear Dynamic Properties and the Parameters Identification Method for Hydraulic Engine Mount

2008-04-01
2008-01-2763
Based on the third generation of hydraulic engine mounts (HEMs), which has three types of hydraulic mechanisms such as inertia track, decoupler and disturbing plate, the influences of the three different hydraulic mechanisms on the dynamic properties were studied experimentally. The working principles of the three hydraulic mechanisms and the relationship between the dynamic properties of the three generations of HEMs were revealed clearly, these experimental results will be helpful for HEM design selection. It was discovered experimentally that the frequency-dependent dynamic properties of HEM with inertia track or orifice have fixed points under different excitation displacement amplitudes. Based on the facts that the analytical results matched well with the experimental ones, a new parameter-identification-method for HEM is presented, which is clear in theory and is time- and cost-saving, the identified results were reliable.
Journal Article

Characteristics of Ethanol, Butanol, Iso-Octane and Gasoline Sprays and Combustion from a Multi-Hole Injector in a DISI Engine

2008-06-23
2008-01-1591
Recent pressures on vehicle manufacturers to reduce their average fleet levels of CO2 emissions have resulted in an increased drive to improve fuel economy and enable use of fuels developed from renewable sources that can achieve a net reduction in the CO2 output of each vehicle. The most popular choice for spark-ignition engines has been the blending of ethanol with gasoline, where the ethanol is derived either from agricultural or cellulosic sources such as sugar cane, corn or decomposed plant matter. However, other fuels, such as butanol, have also arisen as potential candidates due to their similarities to gasoline, e.g. higher energy density than ethanol. To extract the maximum benefits from these new fuels through optimized engine design and calibration, an understanding of the behaviour of these fuels in modern engines is necessary.
Journal Article

Visualization of Partially Premixed Combustion of Gasoline-like Fuel Using High Speed Imaging in a Constant Volume Vessel

2012-04-16
2012-01-1236
Combustion visualizations were carried out in a constant volume vessel to study the partially premixed combustion of a gasoline-like fuel using high speed imaging. The test fuel (G80H20) is composed by volume 80% commercial gasoline and 20% n-heptane. The effects of ambient gas composition, ambient temperature and injection pressure on G80H20 combustion characteristics were analyzed. Meanwhile, a comparison of the EGR effect on combustion process between G80H20 and diesel was made. Four ambient gas conditions that represent the in-cylinder gas compositions of a heavy-duty diesel engine with EGR ratios of 0%, 20%, 40% and 60% were used to simulate EGR conditions. Variables also include two ambient temperature (910K and 870K) and two injection pressure (20 MPa and 50 MPa) conditions.
Journal Article

Development of Surrogate Model for Oxygenated Wide-Distillation Fuel with Polyoxymethylene Dimethyl Ether

2017-10-08
2017-01-2336
Polyoxymethylene Dimethyl Ether (PODEn) is a promising green additive to diesel fuel, owing to the unique chemical structure (CH3O[CH2O]nCH3, n≥2) and high cetane number. Together with the general wide-distillation fuel (WDF), which has an attractive potential to reduce the cost of production of vehicle fuel, the oxygenated WDF with PODEn can help achieve a high efficiency and low emissions of soot, NOx, HC, and CO simultaneously. In this paper, the first detailed reaction mechanism (225 species, 1082 reactions) which can describe the ignition characteristics of PODE1 and PODE3 at low temperature was developed.
Journal Article

Comparative Study on Gasoline HCCI and DICI Combustion in High Load Range with High Compression Ratio for Passenger Cars Application

2017-10-08
2017-01-2257
This study compared the combustion and emission characteristics of Homogeneous Charge Compression Ignition (HCCI) and Direct Injection Compression Ignition (DICI) modes in a boosted and high compression ratio (17) engine fueled with gasoline and gasoline/diesel blend (80% gasoline by volume, denoted as G80). The injection strategy was adjusted to achieve the highest thermal efficiency at different intake pressures. The results showed that Low Temperature Heat Release (LTHR) was not observed in gasoline HCCI. However, 20% additional diesel could lower down the octane number and improve the autoignition reactivity of G80, which contributed to a weak LTHR, accounting for approximately 5% of total released heat. The combustion efficiency in gasoline DICI was higher than those in gasoline HCCI and G80 HCCI, while the exhaust loss and heat transfer loss in DICI mode were higher than those in HCCI mode.
Journal Article

Cold and Warm Start Characteristics using HVO and RME Blends in a V6 Diesel Engine

2013-04-08
2013-01-1306
The first several cycles determine the quality of an engine start. Low temperatures and air/fuel ratio cause incomplete combustion of the fuel. This can lead to dramatic increases in HC and PM emissions. In order to meet Euro V legislation requirements which have stricter cold start emission levels, it is critical to study the characteristics of cold and warm starting of engines in order to develop an optimized operation. The NO and THC emissions were measured by fast CLD and Fast FID gas analyzers respectively and PM in both nucleation and accumulation modes were measured by DMS500. The coolant temperature was controlled in order to guarantee the experiment repeatability. The results show that at cold start using RME60 produced higher NO and lower THC than the other tested fuels while combustion of HVO60 produced a similar level of NO but lower THC compared with mineral diesel. Meanwhile, the nucleation mode of mineral diesel was similar to RME60 but higher than HVO60.
Journal Article

The Impact of Saturated and Unsaturated Fuel Molecules on Diesel Combustion and Exhaust Emissions

2011-08-30
2011-01-1922
Diesel fuels usually comprise a wide range of compounds having different molecular structures which can affect both the fuel's physical properties and combustion characteristics. In future, as synthetic fuels from fossil and sustainable sources become increasingly available, it could be possible to control the fuel's molecular structure to achieve clean and efficient combustion. This paper presents experimental results of combustion and emissions studies undertaken on a single cylinder diesel engine supplied with 18 different fuels each comprising a single, acyclic, non-oxygenated hydrocarbon molecule. These molecules were chosen to highlight the effect of straight carbon chain length, degree of saturation and the addition of methyl groups as branches to a straight carbon chain.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
X