Refine Your Search

Topic

Search Results

Journal Article

A New Method for Bus Drivers' Economic Efficiency Assessment

2015-09-29
2015-01-2843
Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by drivers' behaviors. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers' economic efficiency, considering driving conditions. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated. The driving pattern score could be calculated with these weights.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Technical Paper

Super-Twisting Second-Order Sliding Mode Control for Automated Drifting of Distributed Electric Vehicles

2020-04-14
2020-01-0209
Studying drifting dynamics and control could extend the usable state-space beyond handling limits and maximize the potential safety benefits of autonomous vehicles. Distributed electric vehicles provide more possibilities for drifting control with better grip and larger maximum drift angle. Under the state of drifting, the distributed electric vehicle is a typical nonlinear over-actuated system with actuator redundancy, and the coupling of input vectors impedes the direct use of control algorithm of upper. This paper proposes a novel automated drifting controller for the distributed electric vehicle. First, the nonlinear over-actuated system, comprised of driving system, braking system and steering system, is formulated and transformed to a square system through proposed integrative recombination method of control channel, making general nonlinear control algorithms suitable for this system.
Technical Paper

A Hardware-in-the-Loop Simulator for Vehicle Adaptive Cruise Control Systems by Using xPC Target

2007-08-05
2007-01-3596
A HIL simulator for developing vehicle adaptive cruise control systems is presented in this paper. The xPC target is used to establish real-time simulation environment. The simulator is composed of a virtual vehicle model, real components of an ACC system like ECU, electronic throttle and braking modulator, a user interface to facilitate simulation, and brake and accelerator pedals to make interactive driver inputs easier. The vehicle model is validated against data from field test. Tests of an ACC controller in the real-time are conducted on the simulator.
Technical Paper

Control System Design for Variable Nozzle Turbocharger

2009-06-11
2009-01-1668
The electronic control system of the variable nozzle turbocharger (VNT) was designed. The actuator is the electro-hydraulic servo proportional solenoid. The signals of the engine pedal position sensor, the engine speed sensor, the boost pressure sensor, the intake air temperature sensor, and the ambient pressure sensor are sampled and filtered. The engine working condition is estimated. The control algorithm was designed as the closed-loop feedback digital PI control together with the open-loop feed forward control. The gain-scheduled PI control method is applied to improve the robustness. The control system was calibrated at the turbocharger test bench and the engine test bench. The results indicate the designed control system has good performance for the boost pressure control under the steady and transient conditions.
Technical Paper

Regenerative Brake-by-Wire System Development and Hardware-In-Loop Test for Autonomous Electrified Vehicle

2017-03-28
2017-01-0401
As the essential of future driver assistance system, brake-by-wire system is capable of performing autonomous intervention to enhance vehicle safety significantly. Regenerative braking is the most effective technology of improving energy consumption of electrified vehicle. A novel brake-by-wire system scheme with integrated functions of active braking and regenerative braking, is proposed in this paper. Four pressure-difference-limit valves are added to conventional four-channel brake structure to fulfill more precise pressure modulation. Four independent isolating valves are adopted to cut off connections between brake pedal and wheel cylinders. Two stroke simulators are equipped to imitate conventional brake pedal feel. The operation principles of newly developed system are analyzed minutely according to different working modes. High fidelity models of subsystems are built in commercial software MATLAB and AMESim respectively.
Technical Paper

Fuel Economy Analysis of Periodic Cruise Control Strategies for Power-Split HEVs at Medium and Low Speed

2018-04-03
2018-01-0871
Hybridization of vehicles is considered as the most promising technology for automakers and researchers, facing the challenge of optimizing both the fuel economy and emission of the road transport. Extensive studies have been performed on power-split hybrid electric vehicles (PS-HEVs). Despite of the fact that their excellent fuel economy performance in city driving conditions has been witnessed, a bottle neck for further improving the fuel economy of PS-HEVs has been encountered due to the inherent engine-generator-motor power circulation of the power-split system under medium-low speed cruising scenarios. Due to the special mechanical constraints of the power-split device (PSD), the conventional periodic cruising strategy like Pulse and Glide cannot be applied to PS-HEVs directly.
Technical Paper

Emergency Steering Evasion Control by Combining the Yaw Moment with Steering Assistance

2018-04-03
2018-01-0818
The coordinated control of stability and steering systems in collision avoidance steering evasion has been widely studied in vehicle active safety area, but the studies are mainly aimed at autonomous vehicle without driver or conventional combustion engine vehicle. This paper focuses on the control of hybrid vehicle integrated with rear hub in emergency steering evasion situation, and considering the driver’s characteristics. First, the mathematics model of vehicle dynamics and driver has been given. Second, based on the planned steering evasion path, the model predictive control method is presented for achieving higher evasion path tracking accuracy under driver’s steering input. The prediction model includes an adaptive preview distance driver model and a vehicle dynamics model to predict the driver input and the vehicle trajectory.
Technical Paper

Lightweight Map Updating for Highly Automated Driving in Non-paved Roads

2021-04-28
2021-01-5032
Highly autonomous vehicles have drawn the interests of many researchers in recent years. For highly autonomous vehicles, a high-definition (HD) map is crucial since it provides accurate information for autonomous driving. However, due to the possible fast-changing environment, the performance of HD maps will deteriorate over time if timely updates are not ensured. Therefore, this paper studies the updating of lightweight HD maps in closed areas. Firstly, a novel two-layer map model called a lightweight HD map is introduced to support autonomous driving in a flexible and efficient way. Secondly, typical updating of scenarios in closed areas with non-paved roads is abstracted into operations including area border expansion, road addition, and road deletion. Meanwhile, a map updating framework is proposed to address the issue of map updating in closed areas. Finally, an experiment is conducted to demonstrate the feasibility and effectiveness of the proposed map updating approach.
Technical Paper

A Topological Map-Based Path Coordination Strategy for Autonomous Parking

2019-04-02
2019-01-0691
This paper proposed a path coordination strategy for autonomous parking based on independently designed parking lot topological map. The strategy merges two types of paths at the three stages of path planning, to determinate mode switching timing between low-speed automated driving and automated parking. Firstly, based on the principle that parking spaces should be parallel or vertical to a corresponding path, a topological parking lot map is designed by using the point cloud data collected by LiDAR sensor. This map is consist of road node coordinates, adjacent matrix and parking space information. Secondly, the direction and lateral distance of the parking space to the last node of global path are used to decide parking type and direction at parking planning stage. Finally, the parking space node is used to connect global path and parking path at path coordination stage.
Technical Paper

Road Rough Estimation for Autonomous Vehicle Based on Adaptive Unscented Kalman Filter Integrated with Minimum Model Error Criterion

2022-03-29
2022-01-0071
The accuracy of road input identifiaction for autonomous vehicles (AVs) system, especially in state-based AVs control for improving road handling and ride comfort, is a challenging task for the intelligent transport system. Due to the high fatality rate caused by inaccurate state-based control algorithm, how to precisely and effectively acquire road rough information and chose the reasonable road-based control algorithm become a hot topic in both academia and industry. Uncertainty is unavoidable for AVs system, e.g., varying center of gravity (C.G.) of sprung mass, controllable suspension damping force or variable spring stiffness. To tackle the above mentioned, this paper develops a novel observer approach, which combines unscented Kalman filter (UKF) and Minimum Model Error (MME) theory, to optimize the estimation accuracy of the road rough for AVs system. A full-car nonlinear model and road profile model are first established.
Technical Paper

Trajectory Following Control for Automated Drifting of 4WID Vehicles

2022-03-29
2022-01-0911
It is very significant for autonomous vehicles to have the ability to operate beyond the stable handling limits, which plays a vital role in vehicles’ active safety and enhances riding and driving pleasure. For traditional vehicles, it is rather difficult to control the longitudinal speed, sideslip angle and yaw rate simultaneously when drifting along a given trajectory because they are under-actuated. Nevertheless, for a 4-wheel-independent-drive (4WID) vehicle, it is possible and controllable thanks to its over-actuated characteristics. This article designs a trajectory following control strategy for automated drifting of 4WID vehicles. First, a double-track 7 degree of freedom (7DOF) vehicle dynamic model is established, which incorporates longitudinal and lateral load transfer and considers nonlinear tire models. The controller which proposes a hierarchical architecture is then designed.
Journal Article

Lap Time Optimization and Path Following Control for 4WS & 4WID Autonomous Vehicle

2022-03-29
2022-01-0376
In contrast to a normal vehicle, a 4-wheel steer (4WS) and 4-wheel independent drive (4WID) vehicle provides more flexibilities in vehicle dynamic control and better handling performance, since both the steer angle and drive torque of each wheel can be controlled. However, for motorsports, how much lap time can be improved with such a vehicle is a problem few discussed. So, this paper focuses on the racing line optimization and lap time improvement for a 4WS &4WID vehicle. First, we optimize the racing line and lap time of three given circuits with the genetic algorithm (GA) and interior-point method, and several objective functions are compared. Next, to evaluate the lap time improvement of 4WS & 4WID, a detailed vehicle dynamic model of our 4WS & 4WID platform vehicle is built in Carsim. To follow the racing line, a path following controller which contains a PID speed controller and a model predictive control (MPC) yaw rate controller is built.
Technical Paper

Influences on Energy Savings of Heavy Trucks Using Cooperative Adaptive Cruise Control

2018-04-03
2018-01-1181
An integrated adaptive cruise control (ACC) and cooperative ACC (CACC) was implemented and tested on three heavy-duty tractor-trailer trucks on a closed test track. The first truck was always in ACC mode, and the followers were in CACC mode using wireless vehicle-vehicle communication to augment their radar sensor data to enable safe and accurate vehicle following at short gaps. The fuel consumption for each truck in the CACC string was measured using the SAE J1321 procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb, demonstrating the effects of: inter-vehicle gaps (ranging from 3.0 s or 87 m to 0.14 s or 4 m, covering a much wider range than previously reported tests), cut-in and cut-out maneuvers by other vehicles, speed variations, the use of mismatched vehicles (standard trailers mixed with aerodynamic trailers with boat tails and side skirts), and the presence of a passenger vehicle ahead of the platoon.
Technical Paper

A Trajectory-Based Method for Scenario Analysis and Test Effort Reduction for Highly Automated Vehicle

2019-04-02
2019-01-0139
Unlike the test of passive safety of traditional vehicles, highly automated vehicles (HAV) need more capabilities to be tested. Besides, there are more parameter combinations for the scenarios that need to be tested for each capability, resulting in a high time-consuming and costs for the autonomous vehicle tests. This paper proposes a method for scenario analysis and test effort reduction. Firstly, the trajectories of the vehicle under test (VUT) in the scenario are analyzed, and the trajectories which lead to the test mission failure are obtained. Based on the above trajectories, the threshold that lead to the test mission failure, or a combination of thresholds are analyzed. The above thresholds or a combination of thresholds values are defined as Scenario Character Parameter (SCP). The process of the analysis of the SCPs are related to the abilities of the HAV, but does not depend on the specific algorithm of the HAV.
Technical Paper

Active Steering and Anti-Roll Shared Control for Enhancing Roll Stability in Path Following of Autonomous Heavy Vehicle

2019-04-02
2019-01-0454
Rollover accident of heavy vehicle during cornering is a serious road safety problem worldwide. In the past decade, based on the active intervention into the heavy vehicle roll dynamics method, researches have proposed effective anti-roll control schemes to guarantee roll stability during cornering. Among those studies, however, roll stability control strategies are generally derived independent of front steering control inputs, the interactive control characteristic between steering and anti-roll system have not been thoroughly investigated. In this paper, a novel roll stability control structure that considers the interaction between steering and anti-roll system, is presented and discussed.
Technical Paper

Feature Oriented Optimal Sensor Selection and Arrangement for Perception Sensing System in Automated Driving

2022-12-22
2022-01-7104
The recent proliferation of perception sensing and computing technologies has promoted the rapid development of automated driving. The design of the perception sensing system has nonnegligible influences both on the performances of various automated driving features and on the system costs. This paper proposes an automated driving feature oriented framework for automatic selection and arrangement of the sensors in the perception sensing system. An automated driving feature oriented optimization model is built considering the characteristics and requirements of the specific feature and a genetic algorithm based design method is provided to solve this optimization model. Furthermore, the Adaptive Cruise Control feature and the Automated Parking Assistance feature are selected as the simulation cases to verify the effectiveness of the proposed method.
Technical Paper

Multi-Objective Adaptive Cruise Control via Deep Reinforcement Learning

2022-03-31
2022-01-7014
This work presents a multi-objective adaptive cruise control (ACC) system via deep reinforcement learning (DRL). During the control period, it quantitatively considers three indexes: tracking accuracy, riding comfort, and fuel economy. The system balances contradictions between different indexes to achieve the best overall control results. First, a hierarchical control architecture is utilized, where the upper level controller is synthesized under DRL framework to give out the vehicle desired acceleration. The lower level controller executes the command and compensates vehicle dynamics. Then, four state variables that can comprehensively determine the car-following states are selected for better convergence. Multi-objective reward function is quantitatively designed referring to the evaluation indexes, in which safety constraints are considered by adding violation penalty. Thereafter, the training environment which excludes the disturbance of preceding car acceleration is built.
Technical Paper

Collaborative Control for Intelligent Motorcade Systems: State Transformation, Adaptive Robustness and Stability

2022-12-22
2022-01-7069
The intelligent unmanned ground vehicle (UGV) motorcade system consisting of one leader and n − 1 followers is considered. The safety distance between the front and rear UGVs is treated as the control target. Since the safety distance constraint is a unilateral constraint, the state transformation is needed. Hence, a piecewise type conversion function is formulated to serve for the transformation of the original inequality constraint. The system equation is further expressed by the new state. We assume that the input of the leading UGV is known. Combined with the uncertainty evaluation, a class of collaborative controls for the following UGVs is proposed to deal with the uncertainty with unknown bound. The effectiveness of the designed control is verified by both Lyapunov stability theory and simulations. Both theoretical and simulation results illustrate that the longitudinal safety, stability and global behavior of the intelligent motorcade system are guaranteed.
Technical Paper

Integrated Decision-Making and Planning Method for Autonomous Vehicles Based on an Improved Driving Risk Field

2023-12-31
2023-01-7112
The driving risk field model offers a feasible approach for assessing driving risks and planning safe trajectory in complex traffic scenarios. However, the conventional risk field fails to account for the vehicle size and acceleration, results in the same trajectories are generated when facing different vehicle types and unable to make safe decisions in emergency situations. Therefore, this paper firstly introduces the acceleration and vehicle size of surrounding vehicles for improving the driving risk model. Then, an integrated decision-making and planning model is proposed based on the combination of the novelty risk field and model predictive control (MPC), in which driving risk and vehicle dynamics constraints are taken into consideration. Finally, the multiple driving scenarios are designed and analyzed for validate the proposed model.
X