Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Journal Article

Fire Fighting of Li-Ion Traction Batteries

2013-04-08
2013-01-0213
The number of full electric and hybrid electric vehicles is rapidly growing [1][2][3]. The new technologies accompanying this trend are increasingly becoming a focal point of interest for rescue services. There is much uncertainty about the right techniques to free trapped occupants after an accident. The same applies to vehicle fires. Can car fires involving vehicles with a lithium ion traction battery be handled in the same way as conventional vehicle fires? Is water the right extinguishing agent? Is there a risk of explosion? There are many unanswered questions surrounding the topic of electric vehicle safety. The lack of information is a breeding ground for rumours, misinformation and superficial knowledge. Discussions on various internet platforms further this trend. Tests were conducted on three lithium ion traction batteries, which were fuel-fired until burning on their own. The batteries were then extinguished with water, a surfactant and a gelling agent.
Technical Paper

Towards an Aspect Driven Approach for the Analysis, Evaluation and Optimization of Safety Within the Automotive Industry

2010-04-12
2010-01-0208
An approach will be presented how development projects for safety-related and software-intensive automotive systems can be controlled through the application of model-based risk assessment. Therefore specific control measures have to be developed, which represent the degree of fulfilment of several aspects of safety-related developments. The control measures are evaluated through the analysis of risk-reducing aspects, for which the process of identification and specification is described. Thus, a framework for the creation of a probabilistic and aspect-oriented risk-analysis model (AORA) for safety related projects within automotive industries is currently under development. With respect to the upcoming safety standard ISO 26262 the twofold approach focuses on both, the identification and specification of risk-reducing aspects within the development as well as the application of a probabilistic reasoning model.
Technical Paper

Development of a LIF-Imaging System for Simultaneous High-Speed Visualization of Liquid Fuel and Oil Films in an Optically Accessible DISI Engine

2018-04-03
2018-01-0634
Downsizing and direct injection in modern DISI engines can lead to fuel impinging on the cylinder walls. The interaction of liquid fuel and engine oil due to fuel impinging on the cylinder wall causes problems in both lubrication and combustion. To analyze this issue with temporal and spatial resolution, we developed a laser-induced fluorescence (LIF) system for simultaneous kHz-rate imaging of fuel and oil films on the cylinder wall. Engine oil was doped with traces of the laser dye pyrromethene 567, which fluoresces red after excitation by 532 nm laser radiation. Simultaneously, the liquid fuel was visualized by UV fluorescence of an aromatic “tracer” in a non-fluorescent surrogate fuel excited at 266 nm. Two combinations of fuel and tracer were investigated, iso-octane and toluene as well as a multi-component surrogate and anisole. The fluorescence from oil and fuel was spectrally separated and detected by two cameras.
Technical Paper

Approach to Determine Slip Values Based on the Intensity of Tire Marks with Respect to Tire and Road Properties

2013-04-08
2013-01-0781
The objective of the presented research is to analyze the cause-and-effect chain of the emergence of tire marks and to indentify how the intensity of a friction-related tire mark on asphalt or concrete pavements can provide additional information related to forces or slips at the marking wheels. Focusing on tire marks due to abrasive wear, the influences on the intensity of tire marks are analyzed based on three categories: vehicle dynamic parameters, tire and road properties, which determine the sensitivity of tire marking for a specific tire-road combination for constant vehicle dynamic parameters; and optical parameters, influencing the contrast of a given tire mark. The analysis includes a new objective method for the assessment of the tire mark intensities derived by photos of tire marks, generated with a tire measurement trailer. Additionally a test rig was developed to determine the tire marking sensitivity with reference marks under controlled friction conditions.
Technical Paper

Reduced Model of a Vehicle Cabin for Transient Thermal Simulation

2018-05-30
2018-37-0022
In the proposed work the transient thermal modeling of a vehicle cabin has been performed. Therefore, a reduced model has been developed based on a one-node discretization of the cabin air. The conduction in the solid parts is accounted for by a one-dimensional heat transfer approach, the radiation exchange between the surfaces is based on view factors adopted from a 3D reference and the convective heat transfer from the cabin surfaces to the cabin air is conducted with the help of heat transfer coefficients calculated in a 3D reference simulation. The cabin surface is discretized by planar wall elements, including the outer shell of the cabin and inner elements such as seats. Each wall element is composed of several homogeneous material layers with individual thicknesses. Investigations have been conducted on the temporal and spatial resolution of the layer structure of these wall elements, for the 3D model as well as for the reduced one.
Technical Paper

The Effect of Pre-Crash Safety Systems to Occupant Protection in Offset Frontal Impacts

2015-01-14
2015-26-0164
The ASSESS project is a European Commission co-funded project that aimed to develop harmonized and standardized assessment procedures for collision mitigation and avoidance systems. ASSESS was one of the first European projects which dealt in depth with the concept of integrated safety, defining methodologies to analyse vehicle safety from a global point of view. As such, the developed procedures included driver behaviour evaluation, pre-crash and crash system performance evaluation and socio-economic assessment. The activities performed for the crash evaluation focussed on the influence of braking manoeuvres in occupant positioning through dynamic braking manoeuvres with real occupants and Madymo and LS-Dyna simulations. The assessment of the passive safety protection level according to the results of the influence of the active systems is based on sled testing and full vehicle testing.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

A Numerical Methodology to Compute Temperatures of a Rotating Cardan Shaft

2013-04-08
2013-01-0843
In this paper a new numerical methodology to compute component temperatures of a rotating cardan shaft is described. In general temperatures of the cardan shaft are mainly dominated by radiation from the exhaust gas system and air temperatures in the transmission tunnel and underbody. While driving the cardan shaft is rotating. This yields a uniform temperature distribution of the circumference of the shaft. However most simulation approaches for heat protection are nowadays steady-state computations. In these simulations the rotation of the cardan shaft is not considered. In particular next to the exhaust gas system the distribution of the temperatures of the cardan shaft is not uniform but shows hot temperatures due to radiation at the side facing the exhaust gas system and lower temperatures at the other side. This paper describes a new computational approach that is averaging the radiative and convective heat fluxes circumferentially over bands of the cardan shaft.
Journal Article

Tire Mark Analysis of a Modern Passenger Vehicle with Respect to Tire Variation, Tire Pressure and Chassis Control Systems

2009-04-20
2009-01-0100
Tire mark analysis is an important factor in accident reconstruction. A precise determination of pre- and postcrash speeds as well as longitudinal and lateral accelerations from tire marks contributes significantly to a reliable accident reconstruction. Continuous advancements in tire and vehicle technology – in particular with respect to modern control systems such as anti-lock braking systems (ABS) – raises the question what role tire marks play in accident reconstruction today. Moreover, this accompanies the question to what extent potential interventions by vehicle control systems such as the electronic stability program (ESP®) resp. the electronic stability control (ESC) can be identified in a tire mark. The widespread use of these systems today makes them increasingly important in accident reconstruction.
X