Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Technical Paper

Numerical Study on the Effects of Biodiesel Fuel on Combustion and Emission Characteristics in a Direct Injection Diesel Engine

2010-04-12
2010-01-1259
The effects of the physical and chemical properties of biodiesel fuels on the combustion process and pollutants formation in Direct Injection (DI) engine are investigated numerically by using multi-dimensional CFD models. In the current study, methyl butanoate (MB) and n-heptane are used as the surrogates for the biodiesel fuel and the conventional diesel fuel. Detailed kinetic chemical mechanisms for MB and n-heptane are implemented to simulate the combustion process. It is shown that the differences in the chemical properties between the biodiesel fuel and the diesel fuel affect the whole combustion process more significantly than the differences in the physical properties. While the variations of both the chemical and the physical properties between the biodiesel and diesel fuel influence the soot formation at the equivalent level, the variations in the chemical properties play a crucial role in the NO emissions formation.
Technical Paper

Influence of Oil Compressibility of Fluidic Suspensions on Vehicle Roll Stability and Ride Dynamics

2010-10-05
2010-01-1893
This study investigates influence of compressible hydraulic fluid and suspension floating piston dynamics of fluidic suspensions on heavy vehicle roll stability and ride dynamics. Two fluidic suspension designs, including a single-gas-chamber strut and a novel twin-gas-chamber strut, are analyzed to develop the mathematical formulations of dynamic forces, upon considerations of hydraulic fluid compressibility and floating piston dynamics. Dynamic responses of the heavy vehicle with the different suspension configurations are then performed using a nonlinear roll plane vehicle model. The excitations arise from vehicle-road interactions as well as a steady steering maneuver. The results demonstrate that the compressibility characteristic of hydraulic fluid within a hydro-pneumatic suspension could affect the vehicle roll stability and ride dynamics, while the influence of suspension floating piston dynamics on vehicle dynamic responses is negligible.
Technical Paper

A Novel Air Hybrid Engine Configuration Utilizing Cam-Based Valvetrain

2011-04-12
2011-01-0871
In this work, a new air hybrid engine configuration is introduced in which cam-based valvetrain along with three-way and unidirectional valves make the implementation of different air hybrid engine operational modes possible. This configuration simplifies the air hybrid engine valvetrain significantly and relaxes the necessity of using fully flexible valvetrain in air hybrid engines. Utilizing the proposed configuration allows compression braking (CB), air motor (AM), startup and conventional modes of operation to be realized. The proposed configuration is modeled in GT-Power and the deceleration of a typical vehicle, utilizing only regenerative braking system, is simulated. The efficiency of the system in storing the vehicle's kinetic energy is determined using second law definition for efficiency. The stored energy can be used to either start up the engine or run the off-engine accessories. These two modes are studied and compared.
Technical Paper

Numerical Simulation of the Soot and NOx Formations in a Biodiesel-Fuelled Engine

2011-04-12
2011-01-1385
The importance of using biodiesel as an alternative in diesel engines has been demonstrated previously. A reduction in the soot, CO and HC emissions and an increase in the NO emission burning biodiesel fuels were reported consistently in previous technical papers. However, a widely accepted NO formation mechanism for biodiesel-fueled engines is currently lacking. As a result, in past multi-dimensional simulation studies, the NO emission of biodiesel combustion was predicted unsatisfactorily. In this study, the interaction between the soot and NO formations is considered during the prediction of the soot and NO emissions in a biodiesel-fueled engine. Meanwhile, a three-step soot model and an eight NO model which includes both the thermal NO mechanism and prompt mechanism are implemented.
Technical Paper

Battery Development for Stop-Start Application in Brazilian Market

2013-04-08
2013-01-1526
There is a growing worldwide concern regarding the environmental aspects related to the performance of a corporation and its products, whether by consumer demand or government requirements. The constant pressure for innovations and improvements related to sustainable development are current issues in everyday life of any institution that seeks to consolidate a position of acceptance and competitiveness in the global market. The automotive industry is one of the markets more involved and challenged to the demand of the environmental requirements in regards the limits of pollutant emissions and consequently fuel consumption. The European and North America vehicles already have more electrical content inside (either related to safety and comfort or even needs related to weather), which results in significantly higher consumption levels than traditionally observed in Brazil's application.
Technical Paper

Symbolic Sensitivity Analysis of Math-Based Spark Ignition Engine with Two-Zone Combustion Model

2014-04-01
2014-01-1072
This paper presents a math-based spark ignition (SI) engine model for fast simulation with enough fidelity to predict in-cylinder thermodynamic properties at each crank angle. The quasi-dimensional modelling approach is chosen to simulate four-stroke operation. The combustion model is formulated based on two-zone combustion theory with a turbulent flame propagation model [1]. Cylinder design parameters such as bore and stroke play an important role to achieve higher performance (e.g. power) and reduce undesirable in-cylinder phenomenon (e.g. knocking). A symbolic sensitivity analysis is used to study the effect of the design parameters on the SI engine performance. We used the symbolic Maple/MapleSim environment to obtain highly-optimized simulation code [3]. It also facilitates a sensitivity analysis that identifies the critical parameters for design and control purposes.
X