Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Brake Modulation

2014-04-01
2014-01-0079
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An integral part of this System is an Intervention Strategy that uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. Through this strategy, the driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models. This work develops one means to alter the future vehicle states: modulating the driver's brake commands. This control strategy must be considered in relationship to changes in the throttle commands. Three key elements of this strategy are developed in this work.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Throttle Modulation

2014-04-01
2014-01-0105
A Location-Aware Adaptive Vehicle Dynamics System (LAAVDS) is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's commands are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority. Real-time implementation requires the development of computationally efficient predictive vehicle models which is the focus of this work. This work develops one means to alter the future vehicle states: modulating the driver's throttle commands. First, changes to the longitudinal force are translated to changes in engine torque based on the current operating state (torque and speed) of the engine.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

2014-04-01
2014-01-0858
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Journal Article

Road Profile Estimation for Active Suspension Applications

2015-04-14
2015-01-0651
The road profile has been shown to have significant effects on various vehicle conditions including ride, handling, fatigue or even energy efficiency; as a result it has become a variable of interest in the design and control of numerous vehicle parts. In this study, an integrated state estimation algorithm is proposed that can provide continuous information on road elevation and profile variations, primarily to be used in active suspension controls. A novel tire instrumentation technology (smart tire) is adopted together with a sensor couple of wheel attached accelerometer and suspension deflection sensor as observer inputs. The algorithm utilizes an adaptive Kalman filter (AKF) structure that provides the sprung and unsprung mass displacements to a sliding-mode differentiator, which then yields to the estimation of road elevations and the corresponding road profile along with the quarter car states.
Journal Article

A New Semi-Empirical Method for Estimating Tire Combined Slip Forces and Moments during Handling Maneuvers

2015-07-01
2015-01-9112
Modeling the tire forces and moments (F&M) generation, during combined slip maneuvers, which involves cornering and braking/driving at the same time, is essential for the predictive vehicle performance analysis. In this study, a new semi-empirical method is introduced to estimate the tire combined slip F&M characteristics based on flat belt testing machine measurement data. This model is intended to be used in the virtual tire design optimization process. Therefore, it should include high accuracy, ease of parameterization, and fast computational time. Regression is used to convert measured F&M into pure slip multi-dimensional interpolant functions modified by weighting functions. Accurate combined slip F&M predictions are created by modifying pure slip F&M with empirically determined shape functions. Transient effects are reproduced using standard relaxation length equations. The model calculates F&M at the center of the contact patch.
Journal Article

Target Population for Intersection Advanced Driver Assistance Systems in the U.S.

2015-04-14
2015-01-1408
Intersection crashes are a frequent and dangerous crash mode in the U.S. Emerging Intersection Advanced Driver Assistance Systems (I-ADAS) aim to assist the driver to mitigate the consequences of vehicle-to-vehicle crashes at intersections. In support of the design and evaluation of such intersection assistance systems, characterization of the road, environment, and drivers associated with intersection crashes is necessary. The objective of this study was to characterize intersection crashes using nationally representative crash databases that contained all severity, serious injury, and fatal crashes. This study utilized four national crash databases: the National Automotive Sampling System, General Estimates System (NASS/GES); the NASS Crashworthiness Data System (CDS); and the Fatality Analysis Reporting System (EARS) and the National Motor Vehicle Crash Causation Survey (NMVCCS).
Technical Paper

Understanding How Rain Affects Semantic Segmentation Algorithm Performance

2020-04-14
2020-01-0092
Research interests in autonomous driving have increased significantly in recent years. Several methods are being suggested for performance optimization of autonomous vehicles. However, weather conditions such as rain, snow, and fog may hinder the performance of autonomous algorithms. It is therefore of great importance to study how the performance/efficiency of the underlying scene understanding algorithms vary with such adverse scenarios. Semantic segmentation is one of the most widely used scene-understanding techniques applied to autonomous driving. In this work, we study the performance degradation of several semantic segmentation algorithms caused by rain for off-road driving scenes. Given the limited availability of datasets for real-world off-road driving scenarios that include rain, we utilize two types of synthetic datasets.
Journal Article

A Direct Yaw Control Algorithm for On- and Off-Road Yaw Stability

2011-04-12
2011-01-0183
Models for off-road vehicles, such as farm equipment and military vehicles, require an off-road tire model in order to properly understand their dynamic behavior on off-road driving surfaces. Extensive literature can be found for on-road tire modeling, but not much can be found for off-road tire modeling. This paper presents an off-road tire model that was developed for use in vehicle handling studies. An on-road, dry asphalt tire model was first developed by performing rolling road force and moment testing. Off-road testing was then performed on dirt and gravel driving surfaces to develop scaling factors that explain how the lateral force behavior of the tire will scale from an on-road to an off-road situation. The tire models were used in vehicle simulation software to simulate vehicle behavior on various driving surfaces. The simulated vehicle response was compared to actual maximum speed before sliding vs. turning radius data for the studied vehicle to assess the tire model.
Journal Article

Linear Quadratic Game Theory Approach to Optimal Preview Control of Vehicle Lateral Motion

2011-04-12
2011-01-0963
Vehicle stability is maintained by proper interactions between the driver and vehicle stability control system. While driver describes the desired target path by commanding steering angle and acceleration/deceleration rates, vehicle stability controller tends to stabilize higher dynamics of the vehicle by correcting longitudinal, lateral, and roll accelerations. In this paper, a finite-horizon optimal solution to vehicle stability control is introduced in the presence of driver's dynamical decision making structure. The proposed concept is inspired by Nash strategy for exactly known systems with more than two players, in which driver, commanding steering wheel angle, and vehicle stability controller, applying compensated yaw moment through differential braking strategy, are defined as the dynamic players of the 2-player differential linear quadratic game.
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Journal Article

Using Performance Margin and Dynamic Simulation for Location Aware Adaptation of Vehicle Dynamics

2013-04-08
2013-01-0703
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Performance Margin (PM) is defined in this work as the ratio of the required tractive effort to the available tractive effort for the front and rear respectively. This simple definition stems from and incorporates many traditional handling metrics and is robust in its scope of applicability. The PM is implemented in an Intervention Strategy demonstrating its use to avoid situations in which the vehicle exceeds its handling capabilities. Results from a design case study are presented to show the potential efficacy of developing a PM-based control system.
Journal Article

Location-Aware Adaptive Vehicle Dynamics System: Concept Development

2014-04-01
2014-01-0121
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Location-Aware Adaptive Vehicle Dynamics (LAAVD) System is developed to assist the driver in maintaining vehicle handling capabilities through various driving maneuvers. In contrast to current active safety systems, this system is predictive rather than reactive. This work provides the conceptual groundwork for the proposed system. The LAAVD System employs a predictor-corrector method in which the driver's input commands (throttle, brake, steering) and upcoming driving environment (terrain, traffic, weather) are predicted. An Intervention Strategy uses a novel measure of handling capability, the Performance Margin, to assess the need to intervene. The driver's throttle and brake control are modulated to affect desired changes to the Performance Margin in a manner that is minimally intrusive to the driver's control authority.
Journal Article

A High-Resolution Surface Image Capture and Mapping System for Public Roads

2017-03-28
2017-01-0082
This paper presents a system designed to develop a high-resolution map of public roads by capturing high-resolution surface images. Unlike conventional system, the proposed system applies a field programmable gate array (FPGA) to synchronize camera, Inertial Measurement Unit (IMU), and Global Positioning System (GPS) by using FPGA’s high clock frequency and flexibility to multiple devices. The proposed system, which can be mounted on a regular vehicle, contains a Complementary Metal–Oxide–Semiconductor (CMOS) camera which can achieve 0.006 ms shutter speed and 150 fps frame rate. This camera’s high shutter speed and high frame rate can help capturing images with overlapping region at fast driving speed so that no area is missing from road surface image capturing.
Technical Paper

Design of a Mild Hybrid Electric Vehicle with CAVs Capability for the MaaS Market

2020-04-14
2020-01-1437
There is significant potential for connected and autonomous vehicles to impact vehicle efficiency, fuel economy, and emissions, especially for hybrid-electric vehicles. These improvements could have large-scale impact on oil consumption and air-quality if deployed in large Mobility-as-a-Service or ride-sharing fleets. As part of the US Department of Energy's current Advanced Vehicle Technology Competition (AVCT), EcoCAR: The Mobility Challenge, Mississippi State University’s EcoCAR Team is redesigning and doing the development work necessary to convert a conventional gasoline spark-ignited 2019 Chevy Blazer into a hybrid-electric vehicle with SAE Level 2 autonomy. The target consumer segments for this effort are the Mobility-as-a-Service fleet owners, operators and riders. To accomplish this conversion, the MSU team is implementing a P4 mild hybridization strategy that is expected to result in a 30% increase in fuel economy over the stock Blazer.
Journal Article

An Experimental Study of Diesel-Fuel Property Effects on Mixing-Controlled Combustion in a Heavy-Duty Optical CI Engine

2014-04-01
2014-01-1260
Natural luminosity (NL) and chemiluminescence (CL) imaging diagnostics are employed to investigate fuel-property effects on mixing-controlled combustion, using select research fuels-a #2 ultra-low sulfur emissions-certification diesel fuel (CF) and four of the Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8)-that varied in cetane number (CN), distillation characteristics, and aromatic content. The experiments were performed in a single-cylinder heavy-duty optical compression-ignition (CI) engine at two injection pressures, three dilution levels, and constant start-of-combustion timing. If the experimental results are analyzed only in the context of the FACE fuel design parameters, CN had the largest effect on emissions and efficiency.
Technical Paper

Exhaust Emission Analysis of a Spark Ignition Engine Operating with Hydrogen Injection in a Pre-Combustion Chamber

2020-01-13
2019-36-0121
Due to the large negative impact of combustion gas emissions on air quality and the more stringent environmental legislation, research on internal combustion engines (ICE) are being developed to reduce emissions of pollutant gases to the atmosphere. One of the research fronts is the use of lean mixtures with the pre-chamber ignition system (PCIS). This system consists of a pre-chamber (PC) connected to the main chamber by one or more interconnecting holes. A spark plug initiates combustion of the mixture present in the pre-chamber, which is propagated as gas jet into the main chamber, igniting the lean mixture present therein. The gas jets have high thermal and kinetic energy, which promote faster combustion duration, making the system less prone to knock and with lower cyclic variability of the IMEP, enabling the lean limit extension. The pre-chamber system can be assisted with a supplementary liquid or gaseous fuel injection, enabling the charge stratification.
Technical Paper

Effects of operation temperature on exhaust emissions in a spark ignition system using pre-chamber stratified system

2020-01-13
2019-36-0130
Atmospheric pollution is the major public health issue in many cities around the world. Internal combustion engines (ICE) and industries are common sources of pollutants that aggravate this situation. Aiming to overcome this problem, increasingly restrictive legislation on combustion pollutant emissions has been formulated and new technologies are being developed to ensure compliance with such restrictions. In this scenario, the lean mixtures appear as a possible alternative, but also bring some inconveniences such as combustion instabilities. Pre-chamber ignition systems (PCIS) enable a more stable combustion process due to high kinetic, thermal and chemical energy of the gases from the pre-chamber (PC), which pass through nozzles and begin the combustion process of the air-fuel mixture contained in the main combustion chamber (MC). However, some challenges still have to be overcome in the development of these systems, one of the main ones being hydrocarbon (HC) emissions.
Technical Paper

Analysis of ethanol spray behavior into a Single Cylinder Optical Research Engine

2020-01-13
2019-36-0223
The work focuses on studying ethanol spray behavior injected directly inside a spark ignited internal combustion engine in the compression stroke. An experimental procedure for measuring spray penetration and spray overall cone angle produced by a multi-hole direct injector was developed by means of computational codes written in Matlab environment for working with images of spray injections and to acquire calculated results in an automatic way. The shadowgraph technique with back continuous illumination associated with a high speed recording image process was used in a single cylinder optical research engine for acquiring images of Brazilian ethanol fuel injected at 120° before the top dead center of compression stroke. The process of spray injections occurred with engine speeds of 1000 rpm, 2000 rpm and 3000 rpm. The results showed that spray penetrations decrease and spray cone angle increase when the engine speed is raised.
Technical Paper

Simultaneous Control Optimization of Variable-Geometry Turbocharger and High Pressure EGR on a Medium Duty Diesel Engine

2021-09-21
2021-01-1178
This research examines the interdependence of the control strategies of a high-pressure exhaust gas recirculation (HP-EGR) and a variable geometry turbocharger (VGT) on a medium-duty diesel engine in transient load operation. The effect on fuel economy, particulate and NO production were investigated through multiple tests of synchronously controlled VGT and EGR positions. An optimal steady-state strategy of the above determinants was defined as a function of the VGT’s boost pressure and EGR percent mass. The optimal steady-state strategy was then used to investigate the interdependence of the VGT and HP-EGR in transient load acceptence events which occurred over a range of 2 to 10 seconds. The faster transients increased deviations of boost and EGR levels from steady-state calibration values which consequently led to corresponding fuel consumption and particulate matter emission increases.
Technical Paper

A Simplified Battery Model for Hybrid Vehicle Technology Assessment

2007-04-16
2007-01-0301
The objective of this work is to provide a relatively simple battery energy storage and loss model that can be used for technology screening and design/sizing studies of hybrid electric vehicle powertrains. The model dynamic input requires only power demand from the battery terminals (either charging or discharging), and outputs internal battery losses, state-of-charge (SOC), and pack temperature. Measured data from a vehicle validates the model, which achieves reasonable accuracy for current levels up to 100 amps for the size battery tested. At higher current levels, the model tends to report a higher current than what is needed to create the same power level shown through the measured data. Therefore, this battery model is suitable for evaluating hybrid vehicle technology and energy use for part load drive cycles.
X