Refine Your Search

Topic

Author

Search Results

Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

Perforation Corrosion Performance of Autobody Steel Sheet in On-Vehicle and Accelerated Tests

2003-03-03
2003-01-1238
The Auto/Steel Partnership Corrosion Project Team has completed a perforation corrosion test program consisting of on-vehicle field exposures and various accelerated tests. Steel sheet products with eight combinations of metallic and organic coatings were tested, utilizing a simple crevice coupon design. On-vehicle exposures were conducted in St. John's and Detroit for up to seven years to establish a real-world performance standard. Identical test specimens were exposed to the various accelerated tests, and the results were compared to the real-world standard. This report documents the results of these tests, and compares the accelerated test results (including SAE J2334, GM9540P, Ford APGE, CCT-I, ASTM B117, South Florida Modified Volvo, and Kure Beach (25-meter) exposures) to the on-vehicle tests. The results are compared in terms of five criteria: extent of corrosion, rank order of material performance, degree of correlation, acceleration factor, and control of test environment.
Technical Paper

Application of Micro-Perforated Composite Acoustic Material to a Vehicle Dash Mat

2011-05-17
2011-01-1623
In recent years several variants of lightweight multi-layered acoustic treatments have been used successfully in vehicles to replace conventional barrier-decoupler interior dash mats. The principle involved is to utilize increased acoustic absorption to offset the decrease in insertion loss from the reduced mass such that equivalent vehicle level performance can be achieved. Typical dual density fibrous constructions consist of a relatively dense cap layer on top of a lofted layer. The density and flow resistivity of these layers are tuned to optimize a balance of insertion loss and absorption performance. Generally these have been found to be very effective with the exception of dash mats with very high insertion loss requirements. This paper describes an alternative treatment which consists of a micro-perforated film top layer and fibrous decoupler layer.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

2011-10-04
2011-36-0371
It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

2011-10-04
2011-36-0325
The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

MAAT Cruiser/Feeder Project: Criticalities and Solution Guidelines

2011-10-18
2011-01-2784
MAAT project is a large airship project presented to the last European 7 Framework Program Transport including Aeronautics 2011 deadline. MAAT project is an airship based cruiser-feeder transport system. This paper analyzes the criticalities of the project and the way to upfront these problems which have different natures and possible solutions. Most important criticalities are analyzed both on a methodological point of view and on a direct point of view. Enhanced design methodologies are analyzed in depth to analyze problems, upgrade the project design status continuously and to examine different design options and solutions. An innovative design method has been defined to avoid that problems can produce show stoppers and minimize time delays during project definition.
Technical Paper

Impact of Grid Density on the LES Analysis of Flow CCV: Application to the TCC-III Engine under Motored Conditions

2018-04-03
2018-01-0203
Large-eddy simulation (LES) applications for internal combustion engine (ICE) flows are constantly growing due to the increase of computing resources and the availability of suitable CFD codes, methods and practices. The LES superior capability for modeling spatial and temporal evolution of turbulent flow structures with reference to RANS makes it a promising tool for describing, and possibly motivating, ICE cycle-to-cycle variability (CCV) and cycle-resolved events such as knock and misfire. Despite the growing interest towards LES in the academic community, applications to ICE flows are still limited. One of the reasons for such discrepancy is the uncertainty in the estimation of the LES computational cost. This in turn is mainly dependent on grid density, the CFD domain extent, the time step size and the overall number of cycles to be run. Grid density is directly linked to the possibility of reducing modeling assumptions for sub-grid scales.
Technical Paper

Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part I: 3D Analyses

2018-04-03
2018-01-0850
Recently, a growing interest in the development of more accurate phenomenological turbulence models is observed, since this is a key pre-requisite to properly describe the burn rate in quasi-dimensional combustion models. The latter are increasingly utilized to predict engine performance in very different operating conditions, also including unconventional valve control strategies, such as EIVC or LIVC. Therefore, a reliable phenomenological turbulence model should be able to physically relate the actuated valve strategy to turbulence level during the engine cycle, with particular care in the angular phase when the combustion takes place.
Technical Paper

Mercury Switches in Underhood and Trunk Lamp Applications: A Detailed Environmental and Economic Analysis of Alternatives

1997-02-24
970698
The largest application of mercury in automotive applications occurs in underhood and trunk lamp activation switches. A reduction of mercury in this application will have a significant impact on automotive mercury usage. Using environmentally conscious design and manufacturing principles, this paper will investigate functional alternatives for the activation of underhood (U/H) and trunk lamp applications. Five alternatives to perform the activation function will be analyzed in four areas over their life cycles: Environmental Economic Engineering Manufacturing Each alternative will be ranked on criteria in each of these four areas using documented LCA processes. Totals will be generated for each area, then weighted and added to arrive at an overall score. Four groups of weightings will be used based on the vehicle type: small cars, mid-size cars, large/luxury cars, and trucks.
Technical Paper

Overview - Painted Aluminum Wheels

1986-12-08
862022
This paper discusses the recent growth in aluminum wheel popularity and the problems associated with maintaining the wheel's appearance and corrosion protection. The various options in wheel coatings are then described as well as the adverse wheel environment. Finally, the variables affecting wheel corrosion resistance are explained and the testing that is undertaken to evaluate the performance characteristics of the wheel coating.
Technical Paper

Development of Evaluation Methods for Steering Loss of Assist

2019-04-02
2019-01-1236
Loss of power steering assist (LoA) is viewed as a potential hazard in certain vehicle operational scenarios. Despite the importance of this steering failure mode, few published test protocols for the objective or subjective evaluation of vehicle performance in a loss of assist situation exist. The first part of this paper examines five of the key steering failure modes that can result in LoA and discusses why LoA persists as a key industry challenge. The second part analyzes the situational dynamics affecting vehicle controllability during a LoA event and proposes a subjective evaluation driving course that facilitates evaluations in various LoA scenarios. A corresponding objective test procedure and metric is also proposed. These evaluation methods support consistent performance evaluation of physical vehicles while also enabling the prediction of vehicle characteristics early in the vehicle development process (VDP).
Technical Paper

A Comparison between Different Moving Grid Techniques for the Analysis of the TCC Engine under Motored Conditions

2019-04-02
2019-01-0218
The accurate representation of Internal Combustion Engine (ICE) flows via CFD is an extremely complex task: it strongly depends on a combination of highly impacting factors, such as grid resolution (both local and global), choice of the turbulence model, numeric schemes and mesh motion technique. A well-founded choice must be made in order to avoid excessive computational cost and numerical difficulties arising from the combination of fine computational grids, high-order numeric schemes and geometrical complexity typical of ICEs. The paper focuses on the comparison between different mesh motion technologies, namely layer addition and removal, morphing/remapping and overset grids. Different grid strategies for a chosen mesh motion technology are also discussed. The performance of each mesh technology and grid strategy is evaluated in terms of accuracy and computational efficiency (stability, scalability, robustness).
Technical Paper

Critical Plane Analysis of Rubber Bushing Durability under Road Loads

2016-04-05
2016-01-0393
We demonstrate here an accounting of damage accrual under road loads for a filled natural rubber bushing. The accounting is useful to developers who wish to avoid the typical risks in development programs: either the risk of premature failure, or of costly overdesign. The accounting begins with characterization of the elastomer to quantify governing behaviors: stress-strain response, fatigue crack growth rate, crack precursor size, and strain crystallization. Finite Element Analysis is used to construct a nonlinear mapping between loads and strain components within each element. Multiaxial, variable amplitude strain histories are computed from road loads. Damage accrues in this reckoning via the growth of cracks. Crack growth is calculated via integration of a rate law from an initial size to a size marking end-of-life.
Technical Paper

Design of ACHEON Thrust and Vector Propulsion System

2015-09-15
2015-01-2425
This paper focuses on the calculation methodology of the thrust of a ACHEON propulsion system, which is based on Coanda effect deflection of thrust. It defines a calculation methodology based on integral equations. The proposed methodology allows an effective calculation of the performances and the force applied on the airplane by such a propulsion system. It will also allow an effective design of the nozzle system and will implement also internal elements with an accurate definition of frictional losses. Outstanding results have been obtained together with general rules for implanting ACHEON propulsion inside an aircraft.
Technical Paper

Automotive Materials Engineering Challenges and Solutions for the Use of Ethanol and Methanol Blended Fuels

2010-04-12
2010-01-0729
Economic market forces and increasing environmental awareness of gasoline have led to interest in developing alternatives to gasoline, and extending the current global supply for transportation fuels. One viable strategy is the use of alternative alcohol fuels for combustion engines, with ethanol and methanol in various concentration ranges proposed and in-use. Utilizing and citing data from this review, a comprehensive overview of the materials selection and engineering challenges facing metals, plastics and elastomers are presented. The engineering approach and solution-sets discussed will focus on production feasibility and implementation. The effects from the fuel chemistry and quality of fuel ethanol produced on the related vehicle components are discussed.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

Experimental and Numerical Momentum Flux Analysis of Jets from a Hydrogen Injector

2024-04-09
2024-01-2616
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented.
X