Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

2021-04-06
2021-01-0525
The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects through variation of the proportions of fuels with different reactivities, and engine operating condition variations can provide information on physical effects. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold.
Journal Article

Exploring the EGR Dilution Limits of a Pre-Chamber Ignited Heavy-Duty Natural Gas Engine Operated at Stoichiometric Conditions - An Optical Study

2023-04-11
2023-01-0256
Pre-chamber spark ignition (PCSI) systems have been proven to improve combustion stability in highly-diluted and ultra-lean natural gas (NG) engine operation by providing spatially distributed ignition initiated by multiple turbulent flame-jets that lead to faster combustion compared to conventional spark ignition. This work investigates the physico-chemical processes that drive the ignition and subsequent combustion in the presence of combustion residuals (internal EGR) within the pre-chamber at varying EGR levels. The over-arching goal is to improve the dilution tolerance of PCSI systems for stoichiometric-operation of on-road heavy-duty natural gas engine. To this end, experiments were performed in a heavy-duty, optical, single-cylinder engine to explore the EGR dilution limits of a pre-chamber, spark-ignited, NG engine operated under stoichiometric conditions. A special skip-fire sequence is utilized to distinguish the effects of in-cylinder combustion residuals from external EGR.
X