Refine Your Search

Topic

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development of a Low Cost Production Automotive Engine for Range Extender Application for Electric Vehicles

2016-04-05
2016-01-1055
Range Extended Electric Vehicles (REEVs) are gaining popularity due to their simplicity, reduced emissions and fuel consumption when compared to parallel or series/parallel hybrid vehicles. The range extender internal combustion engine (ICE) can be optimised to a number of steady state points which offers significant improvement in overall exhaust emissions. One of the key challenges in such vehicles is to reduce the overall powertrain costs, and OEMs providing REEVs such as the BMW i3 have included the range extender as an optional extra due to increasing costs on the overall vehicle price. This paper discusses the development of a low cost Auxiliary Power Unit (APU) of c.25 kW for a range extender application utilising a 624 cc two cylinder automotive gasoline engine. Changes to the base engine are limited to those required for range extender development purposes and include prototype control system, electronic throttle, redesigned manifolds and calibration on European grade fuel.
Technical Paper

A Study on Dynamic Torque Cancellation in a Range Extender Unit

2016-04-05
2016-01-1231
A range extended electric vehicle (REEV) has the benefit of zero pipeline emission for most of the daily commute driving using the full electric mode while maintaining the capability for a long-range trip without the requirement of stop-and-charge. This capability is provided by the on-board auxiliary power unit (APU) which is used to maintain the battery state of charge at a minimum limit. Due to the limited APU package size, a small capacity engine with low-cylindercount is normally used which inherently exposes more severe torque pulsation, that arises from a low firing frequency. By using vector control, it is feasible to vary the generator in-cycle torque to counteract the engine torque oscillation dynamically. This allows for a smoother operation of the APU with the possibility of reducing the size of the engine flywheel. In this paper, a series of motor/generator control torque patterns were applied with the aim of cancelling the engine in-cycle torque pulses.
Technical Paper

Freevalve: Control and Optimization of Fully Variable Valvetrain-Enabled Combustion Strategies for High Performance Engines

2022-08-30
2022-01-1066
With ever stricter legislative requirements for CO2 and other exhaust emissions, significant efforts by OEMs have launched a number of different technological strategies to meet these challenges such as Battery Electric Vehicles (BEVs). However, a multiple technology approach is needed to deliver a broad portfolio of products as battery costs and supply constraints are considerable concerns hindering mass uptake of BEVs. Therefore, further investment in Internal Combustion (IC) engine technologies to meet these targets are being considered, such as lean burn gasoline technologies alongside other high efficiency concepts such as dedicated hybrid engines. Hence, it becomes of sound reason to further embrace diversity and develop complementary technologies to assist in the transition to the next generation hybrid powertrain. One such approach is to provide increased valvetrain flexibility to afford new degrees of freedom in engine operating strategies.
Technical Paper

Development and Testing of a Low Cost High Performance Hybrid Vehicle Electric Motor

2013-04-08
2013-01-1760
A large proportion of automotive engineering research is focused on the reduction of vehicle fuel consumption thereby reducing CO₂ emissions. One effective method is to use an electric motor in conjunction with the engine (hybrid electric vehicle). This paper details the development and performance characteristics of a low cost hybrid vehicle electric motor, originally developed for the retrofit hybrid vehicle market, although it is intended to be suitable for many applications. The motor is a low cost, scalable, high performance motor, primarily for automotive applications. The motor has been designed to make it stackable for higher power or torque requirements. The use of lightweight materials and innovative cooling designs are novel to this motor. Results obtained from extensive testing of the motor are detailed in the paper including the efficiency map, power and torque curves, continuous powers, etc.
Technical Paper

A Driver Advisory Tool to Reduce Fuel Consumption

2013-03-10
2012-01-2087
Driver behaviour can strongly affect fuel consumption, and driver training in eco-driving techniques has been shown to reduce fuel consumption by 10% on average. However the effects of this training can be short-lived, so there is an apparent need for continuous monitoring of driver behaviour. This study presents a driver advisory tool which encourages eco-driving, and its evaluation in the field. The system, developed by Ashwoods Automotive Ltd (UK) and the University of Bath (UK), is aimed at fleet operators of light commercial vehicles, where the driver is typically a company employee. A significant strength of the system is that it has been designed for easy integration with the vehicle CAN-bus, reducing complexity and cost. By considering the Inertial Power Surrogate (speed times acceleration) the core algorithm is able to identify behaviour which is likely to increase fuel consumption.
Technical Paper

Review of Turbocharger Mapping and 1D Modelling Inaccuracies with Specific Focus on Two-Stag Systems

2015-09-06
2015-24-2523
The adoption of two stage serial turbochargers in combination with internal combustion engines can improve the overall efficiency of powertrain systems. In conjunction with the increase of engine volumetric efficiency, two stage boosting technologies are capable of improving torque and pedal response of small displacement engines. In two stage sequential systems, high pressure (HP) and low pressure (LP) turbochargers are packaged in a way that the exhaust gases access the LP turbine after exiting the HP turbine. On the induction side, fresh air is compressed sequentially by LP and HP compressors. The former is able to deliver elevated pressure ratios, but it is not able to highly compressor low flow rates of air. The latter turbo-machine can increase charge pressure at lower mass air flow and be by-passed at high rates of air flow.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Technical Paper

Improving Heat Transfer and Reducing Mass in a Gasoline Piston Using Additive Manufacturing

2015-04-14
2015-01-0505
Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing to the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power densities. Thus, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
X